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Abstract of the Dissertation

Local Modeling of Attributed Graphs: Algorithms and Applications

by

Bryan Perozzi

Doctor of Philosophy

in

Computer Science

Stony Brook University

2016

It is increasingly common to encounter real-world graphs which have attributes associated
with the nodes, in addition to their raw connectivity information. For example, social networks
contain both the friendship relations as well as user attributes such as interests and demographics. A
protein-protein interaction network may not only have the interaction relations but the expression
levels associated with the proteins. Such information can be described by a graph in which nodes
represent the objects, edges represent the relations between them, and feature vectors associated
with the nodes represent the attributes. This graph data is often referred to as an attributed graph.

This thesis focuses on developing scalable algorithms and models for attributed graphs. This
data can be viewed as either discrete (set of edges), or continuous (distances between embedded
nodes), and I examine the issue from both sides. Specifically, I present an online learning algorithm
which utilizes recent advances in deep learning to create rich graph embeddings. The multiple scales
of social relationships encoded by this novel approach are useful for multi-label classification and
regression tasks in networks. I also present local algorithms for anomalous community scoring in
discrete graphs. These algorithms discover subsets of the graph’s attributes which cause communities
to form (e.g. shared interests on a social network).

The scalability of all the methods in this thesis is ensured by building from a restricted set
of graph primitives, such as ego-networks and truncated random walks, which exploit the local
information around each vertex. In addition, limiting the scope of graph dependencies we consider
enables my approaches to be trivially parallelized using commodity tools for big data processing,
like MapReduce or Spark.
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The applications of this work are broad and far reaching across the fields of data mining and
information retrieval, including user profiling/demographic inference, online advertising, and fraud
detection.
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Dedicated to my mother

“Computers are the future.”
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Chapter 1

Introduction

This thesis is concerned with the scalable modeling of attributed graphs. In a large attributed
network such as the Netflix user/movie graph or the Facebook social graph, how can we use a local
view of the graph structure to predict node attributes? Do homogeneous communities occur? How
can we efficiently find the relevant subspaces which cause them? Can we query these communities
directly? Which structural links are anomalous and shouldn’t be trusted?

Network data can be viewed with either a discrete (set of edges) or continuous (distances
between embedded nodes) representation. In this thesis, I examine the issue from both sides.
Specifically, I present scalable online learning algorithms which create useful graph embeddings. I
also develop local algorithms for anomalous community scoring in discrete graphs.

In the course of evaluation, I study many different networks, including word co-occurrence
graphs from Wikipedia, product co-purchase graphs from Amazon, collaboration networks such
as Citeseer and DBLP, and many social networks such as Facebook, Twitter, Google+, YouTube,
LastFM, and Flickr. I show the utility of my proposed methods through a number of real world appli-
cations including multi-label classification, user demographic inference, and anomalous community
mining.

1.1 The Local Modeling Philosophy
Let G be a graph, G = (V,E4), where V represent the vertices of the network, and E the set of
connections between them, E ⊆ (V × V ). In many graphs of practical concern, the cardinalities of
V and E can be incredibly large, with |V | ∼ 1, 000, 000, 000 and |E| ∼ 100, 000, 000, 000. Figure
1.1 presents the sizes of several such real world graphs. We note that each of these graphs drive
commercial products with billions of dollars in annual revenue.

Graph Number of Vertices, |V | Number of Edges, |E| Notes
Facebook, 2011 721,000,000 68,200,000,000 From [140]
Facebook, 2016 1,590,000,000 — Monthly Active Users, December 20151

Amazon, 2015 480,000,000 — US Product Co-purchase Graph 2

Internet, 2016 4,630,000,000 — Indexed Web Graph3

Table 1.1: Some graphs of commercial importance
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To cope with the massive size of these graphs, I propose approaches based on local modeling
throughout this thesis. More of a philosophy (or perhaps a heuristic) than a hard rule, I believe
that the only successful approach possible when dealing with graphs comprising such ‘big data’ is
to purposely limit the scope of the relationship which you are willing to consider. By purposely
analyzing less data per vertex, one can thereby do more.

To ensure these local properties of methods which I present in this thesis, I utilize a restricted
set of graph primitives – truncated random walks and ego networks.

1.2 Thesis Overview
This thesis focuses on my work in local algorithms for graph embedding and anomaly detection in
attributed graphs. I begin with Chapter 2, where I introduce my method for deep learning for social
networks. This method, DeepWalk, uses short random walks to learn a mapping function Φ which
uses a small number (d) of latent dimensions to describe each vertex v in a graph, Φ(v) ∈ R|V |×d.
These representations are useful for multi-label classification tasks. Next, in Chapter 3, I describe a
modification of DeepWalk’s sampling procedure to produce representations which capture multiple
scales of community information. I then present a method to detect groups of attributes (a subspace)
which causes observed community structure to form in Chapter 4. This method allows efficient
optimization, and can scale to large communities. I follow this in Chapter 5 with a method to allow
user focused querying of attributed graphs, with an integrated anomaly detection. Finally, I present
some observations about the nearest neighbor graphs of these embedding spaces in Chapter 6, and
close with conclusions and future work in Chapter 7. I briefly describe these chapters further below:

DeepWalk - Online Learning of Social Representations [117] We present DEEPWALK, a novel
approach for learning latent representations of vertices in a network. These latent representations
encode social relations in a continuous vector space, which is easily exploited by statistical models.
DEEPWALK generalizes recent advancements in language modeling and unsupervised feature
learning (or deep learning) from sequences of words to graphs.

DEEPWALK uses local information obtained from truncated random walks to learn latent
representations by treating walks as the equivalent of sentences. We demonstrate DEEPWALK’s
latent representations on several multi-label network classification tasks for social networks such
as BlogCatalog, Flickr, and YouTube. Our results show that DEEPWALK outperforms challenging
baselines which are allowed a global view of the network, especially in the presence of missing
information. DEEPWALK’s representations can provide F1 scores up to 10% higher than competing
methods when labeled data is sparse. In some experiments, DEEPWALK’s representations are able
to outperform all baseline methods while using 60% less training data.

DEEPWALK is also scalable. It is an online learning algorithm which builds useful incremental
results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world
applications such as network classification, and anomaly detection.

Walklets: Multiscale Graph Embeddings for Interpretable Network Classification [119] We
present Multiscale Network Embeddings (WALKLETS), a novel approach for learning multiscale
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representations of vertices in a network. These representations clearly encode multiscale vertex
relationships in a continuous vector space suitable for multi-label classification problems. Unlike
previous work, the latent features generated using WALKLETS are analytically derivable, and human
interpretable.

WALKLETS uses the offsets between vertices observed in a random walk to learn a series
of latent representations, each which captures successively larger relationships. This variety of
dependency information allows the same representation strategy to model phenomenon which occur
at different scales.

We demonstrate WALKLETS’s latent representations on several multi-label network classifica-
tion tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that
WALKLETS outperforms new methods based on neural matrix factorization, and can scale to graphs
with millions of vertices and edges.

AMEN [111] Given a graph with node attributes, what neighborhoods4 are anomalous? To answer
this question, one needs a quality score that utilizes both structure and attributes. Popular existing
measures either quantify the structure only and ignore the attributes (e.g., conductance), or only
consider the connectedness of the nodes inside the neighborhood and ignore the cross-edges at the
boundary (e.g., density).

In this work we propose normality, a new quality measure for attributed neighborhoods.
Normality utilizes structure and attributes together to quantify both internal consistency and
external separability. It exhibits two key advantages over other measures: (1) It allows many
boundary-edges as long as they can be “exonerated”; i.e., either (i) are expected under a null
model, and/or (ii) the boundary nodes do not exhibit the subset of attributes shared by the neigh-
borhood members. Existing measures, in contrast, penalize boundary edges irrespectively. (2)
Normality can be efficiently maximized to automatically infer the shared attribute subspace
(and respective weights) that characterize a neighborhood. This efficient optimization allows us to
process graphs with millions of attributes.

We capitalize on our measure to present a novel approach for Anomaly Mining of Entity
Neighborhoods (AMEN). Experiments on real-world attributed graphs illustrate the effectiveness
of our measure at anomaly detection, outperforming popular approaches including conductance,
density, OddBall, and SODA. In addition to anomaly detection, our qualitative analysis demonstrates
the utility of normality as a powerful tool to contrast the correlation between structure and
attributes across different graphs.

Focused Clustering [114] : Graph clustering and graph outlier detection have been studied
extensively on plain graphs, with various applications. Recently, algorithms have been extended to
graphs with attributes as often observed in the real-world. However, all of these techniques fail to
incorporate the user preference into graph mining, and thus, lack the ability to steer algorithms to
more interesting parts of the attributed graph.

4A neighborhood is used as a general term throughout text and refers to any connected subgraph; such as
a cluster, community, social circle, ego network, etc.
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In this work, we overcome this limitation and introduce a novel user-oriented approach for
mining attributed graphs. The key aspect of our approach is to infer user preference by the so-called
focus attributes through a set of user-provided exemplar nodes. In this new problem setting, clusters
and outliers are then simultaneously mined according to this user preference. Specifically, our
FOCUSCO algorithm identifies the focus, extracts focused clusters and detects outliers. Moreover,
FOCUSCO scales well with graph size, since we perform a local clustering of interest to the user
rather than global partitioning of the entire graph. We show the effectiveness and scalability of
our method on synthetic and real-world graphs, as compared to both existing graph clustering and
outlier detection approaches.

Language Networks [115] Recent advancements in unsupervised feature learning have developed
powerful latent representations of words. Understanding the structure of latent spaces attained is
key to any future advancement in unsupervised learning.

In this work, we introduce a new view of continuous space word representations as language
networks. We explore two techniques to create language networks from learned features by inducing
them for two popular word representation methods and examining the properties of their resulting
networks. We find that the induced networks differ from other methods of creating language
networks, and that they contain meaningful community structure.

1.3 Additional Work
I have also worked on a number of additional projects, omitted for the sake of brevity:

My work in computational social science has developed a method for tracking linguistic shift
through time utilizing neural network matrix factorization [71]. This statistically sound method
is capable of tracking linguistic change across years of micro-blogging using Twitter, a decade of
product reviews using a corpus of movie reviews from Amazon, and a century of written books
using the Google Book Ngrams. I have also worked on predicting user age information with latent
representations [112]. I show that DEEPWALK offers an attractive alternative to iterative methods
for estimating user age in social networks.

My work in natural language processing has focused around representation learning for building
massively multilingual NLP systems. I have analyzed the capabilities of word embedding methods
[29], generated representations from the 137 languages on Wikipedia which had more than 10,000
articles [5], used a knowledge base and positive label learning to build named entity annotators
for 40 languages [6], and analyzed the community structure present in the Polyglot embedded
representations [115].

I have also done work in distributed graph algorithms for Hadoop [88] and Pregel [113, 118].
Finally, I have also worked on using anomalous link discovery to find bad recommendations in a
very large entity recommendation network (The Google Related Places Graph) [120].
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Chapter 2

Deep Learning for Social Networks

2.1 Introduction

The sparsity of a network representation is both a strength and a weakness. Sparsity enables the
design of efficient discrete algorithms, but can make it harder to generalize in statistical learning.
Machine learning applications in networks (such as network classification [53, 125], content
recommendation [46], anomaly detection [27], and missing link prediction [80]) must be able to
deal with this sparsity in order to survive.

In this paper we introduce deep learning (unsupervised feature learning) [17] techniques, which
have proven successful in natural language processing, into network analysis for the first time. We
develop an algorithm (DEEPWALK) that learns social representations of a graph’s vertices, by
modeling a stream of short random walks. Social representations are latent features of the vertices
that capture neighborhood similarity and community membership. These latent representations
encode social relations in a continuous vector space with a relatively small number of dimensions.
DEEPWALK generalizes neural language models to process a special language composed of a set of
randomly-generated walks. These neural language models have been used to capture the semantic
and syntactic structure of human language[33], and even logical analogies [94].

DEEPWALK takes a graph as input and produces a latent representation as an output. The result
of applying our method to the well-studied Karate network is shown in Figure 2.1. The graph,
as typically presented by force-directed layouts, is shown in Figure 2.1a. Figure 2.1b shows the
output of our method with 2 latent dimensions. Beyond the striking similarity, we note that linearly
separable portions of (2.1b) correspond to clusters found through modularity maximization in the
input graph (2.1a) (shown as vertex colors).

To demonstrate DEEPWALK’s potential in real world scenarios, we evaluate its performance
on challenging multi-label network classification problems in large heterogeneous graphs. In
the relational classification problem, the links between feature vectors violate the traditional i.i.d.
assumption. Techniques to address this problem typically use approximate inference techniques

This work originally appeared as “Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of
social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’14, pages 701–710, New York, NY, USA, 2014. ACM.”
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(a) Input: Karate Graph
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(b) Output: Representation

Figure 2.1: Our proposed method learns a latent space representation of social interactions
in Rd. The learned representation encodes community structure so it can be easily exploited
by standard classification methods. Here, our method is used on Zachary’s Karate network
[153] to generate a latent representation in R2. Note the correspondence between community
structure in the input graph and the embedding. Vertex colors represent a modularity-based
clustering of the input graph.

[102] to leverage the dependency information to improve classification results. We distance
ourselves from these approaches by learning label-independent representations of the graph. Our
representation quality is not influenced by the choice of labeled vertices, so they can be shared
among tasks.

DEEPWALK outperforms other latent representation methods for creating social dimensions
[132, 134], especially when labeled nodes are scarce. Strong performance with our representations
is possible with very simple linear classifiers (e.g. logistic regression). Our representations are
general, and can be combined with any classification method (including iterative inference methods).
DEEPWALK achieves all of that while being an online algorithm that is trivially parallelizable.

Our contributions are as follows:

• We introduce deep learning as a tool to analyze graphs, to build robust representations that
are suitable for statistical modeling. DEEPWALK learns structural regularities present within
short random walks.

• We extensively evaluate our representations on multi-label classification tasks on several
social networks. We show significantly increased classification performance in the presence
of label sparsity, getting improvements 5%-10% of Micro F1, on the sparsest problems we
consider. In some cases, DEEPWALK’s representations can outperform its competitors even
when given 60% less training data.

• We demonstrate the scalability of our algorithm by building representations of web-scale
graphs, (such as YouTube) using a parallel implementation. Moreover, we describe the
minimal changes necessary to build a streaming version of our approach.
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The rest of the paper is arranged as follows. In Sections 4.3 and 2.3, we discuss the problem
formulation of classification in data networks, and how it relates to our work. In Section 2.4 we
present DEEPWALK, our approach for Social Representation Learning. We outline ours experiments
in Section 2.5, and present their results in Section 5.4. We close with a discussion of related work in
Section 5.2, and our conclusions.

2.2 Problem Definition
We consider the problem of classifying members of a social network into one or more categories. Let
G = (V,E), where V represent the members of the network, E are their connections, E ⊆ (V ×V ),
and GL = (V,E,X, Y ) is a partially labeled social network, with attributes X ∈ R|V |×S where S is
the size of the feature space for each attribute vector, and Y ∈ R|V |×|Y|, Y is the set of labels.

In a traditional machine learning classification setting, we aim to learn a hypothesis H that maps
elements of X to the labels set Y . In our case, we can utilize the significant information about the
dependence of the examples embedded in the structure of G to achieve superior performance.

In the literature, this is known as the relational classification (or the collective classification
problem [125]). Traditional approaches to relational classification pose the problem as an inference
in an undirected Markov network, and then use iterative approximate inference algorithms (such
as the iterative classification algorithm [102], Gibbs Sampling [52], or label relaxation [65]) to
compute the posterior distribution of labels given the network structure.

We propose a different approach to capture the network topology information. Instead of mixing
the label space as part of the feature space, we propose an unsupervised method which learns
features that capture the graph structure independent of the labels’ distribution.

This separation between the structural representation and the labeling task avoids cascading
errors, which can occur in iterative methods [104]. Moreover, the same representation can be used
for multiple classification problems concerning that network.

Our goal is to learn XE ∈ R|V |×d, where d is small number of latent dimensions. These
low-dimensional representations are distributed; meaning each social phenomena is expressed by a
subset of the dimensions and each dimension contributes to a subset of the social concepts expressed
by the space.

Using these structural features, we will augment the attributes space to help the classification
decision. These features are general, and can be used with any classification algorithm (including
iterative methods). However, we believe that the greatest utility of these features is their easy
integration with simple machine learning algorithms. They scale appropriately in real-world
networks, as we will show in Section 5.4.

2.3 Learning Social Representations
We seek to learn social representations with the following characteristics:
• Adaptability - Real social networks are constantly evolving; new social relations should not

require repeating the learning process all over again.
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• Community aware - The distance between latent dimensions should represent a metric for
evaluating social similarity between the corresponding members of the network. This allows
generalization in networks with homophily.

• Low dimensional - When labeled data is scarce low-dimensional models generalize better,
and speed up convergence and inference.

• Continuous - We require latent representations to model partial community membership
in continuous space. In addition to providing a nuanced view of community membership,
a continuous representation has smooth decision boundaries between communities which
allows more robust classification.

Our method satisfies these requirements by learning representation for vertices from a stream
of short random walks, using optimization techniques originally designed for language modeling.
Here, we review the basics of both random walks and language modeling, and describe how their
combination satisfies our requirements.

2.3.1 Random Walks

We denote a random walk rooted at vertex vi asWvi . It is a stochastic process with random variables
W1

vi
,W2

vi
, . . . ,Wk

vi
such that Wk+1

vi
is a vertex chosen at random from the neighbors of vertex

vk. Random walks have been used as a similarity measure for a variety of problems in content
recommendation [46] and community detection [8]. They are also the foundation of a class of
output sensitive algorithms which use them to compute local community structure information in
time sublinear to the size of the input graph [129].

It is this connection to local structure that motivates us to use a stream of short random walks
as our basic tool for extracting information from a network. In addition to capturing community
information, using random walks as the basis for our algorithm gives us two other desirable
properties. First, local exploration is easy to parallelize. Several random walkers (in different threads,
processes, or machines) can simultaneously explore different parts of the same graph. Secondly,
relying on information obtained from short random walks make it possible to accommodate small
changes in the graph structure without the need for global recomputation. We can iteratively update
the learned model with new random walks from the changed region in time sub-linear to the entire
graph.

2.3.2 Connection: Power laws

Having chosen online random walks as our primitive for capturing graph structure, we now need a
suitable method to capture this information. If the degree distribution of a connected graph follows a
power law (i.e. scale-free), we observe that the frequency which vertices appear in the short random
walks will also follow a power-law distribution.

Word frequency in natural language follows a similar distribution, and techniques from language
modeling account for this distributional behavior. To emphasize this similarity we show two
different power-law distributions in Figure 2.2. The first comes from a series of short random walks
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Figure 2.2: The distribution of vertices appearing in short random walks (2.2a) follows a
power-law, much like the distribution of words in natural language (2.2b).

on a scale-free graph, and the second comes from the text of 100,000 articles from the English
Wikipedia.

A core contribution of our work is the idea that techniques which have been used to model
natural language (where the symbol frequency follows a power law distribution (or Zipf’s law))
can be re-purposed to model community structure in networks. We spend the rest of this section
reviewing the growing work in language modeling, and transforming it to learn representations of
vertices which satisfy our criteria.

2.3.3 Language Modeling

The goal of language modeling is to estimate the likelihood of a specific sequence of words appearing
in a corpus. More formally, given a sequence of words W n

1 = (w0, w1, · · · , wn), where wi ∈ V (V
is the vocabulary), we would like to maximize the Pr(wn|w0, w1, · · · , wn−1) over all the training
corpus. Recent work in representation learning has focused on using probabilistic neural networks
to build general representations of words which extend the scope of language modeling beyond its
original goals.

In this work, we present a generalization of language modeling to explore the graph through a
stream of short random walks. These walks can be thought of as short sentences and phrases in a
special language; the direct analog is to estimate the likelihood of observing vertex vi given all the
previous vertices visited so far in the random walk, i.e.

Pr
(
vi | (v1, v2, · · · , vi−1)

)
(2.1)

Our goal is to learn a latent representation, not only a probability distribution of node co-
occurrences, and so we introduce a mapping function Φ: v ∈ V 7→ R|V |×d. This mapping Φ
represents the latent social representation associated with each vertex v in the graph. (In practice,
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we represent Φ by a |V | × d matrix of free parameters, which will serve later on as our XE). The
problem then, is to estimate the likelihood:

Pr
(
vi |

(
Φ(v1),Φ(v2), · · · ,Φ(vi−1)

))
(2.2)

However, as the walk length grows, computing this conditional probability becomes unfeasible.
A recent relaxation in language modeling [92, 93] turns the prediction problem on its head.

First, instead of using the context to predict a missing word, it uses one word to predict the context.
Secondly, the context is composed of the words appearing to both the right and left of the given
word. Finally, it removes the ordering constraint on the problem, instead, requiring the model
to maximize the probability of any word appearing in the context without the knowledge of its
offset from the given word. In terms of vertex representation modeling, this yields the optimization
problem:

minimize
Φ

− log Pr
(
{vi−w, · · · , vi+w} \ vi | Φ(vi)

)
(2.3)

We find these relaxations are particularly desirable for social representation learning. First, the
order independence assumption better captures a sense of ‘nearness’ that is provided by random
walks. Moreover, this relaxation is quite useful for speeding up the training time by building small
models as one vertex is given at a time.

Solving the optimization problem from Eq. 2.3 builds representations that capture the shared
similarities in local graph structure between vertices. Vertices which have similar neighborhoods
will acquire similar representations (encoding co-citation similarity), allowing generalization on
machine learning tasks.

By combining both truncated random walks and language models we formulate a method which
satisfies all of our desired properties. This method generates representations of social networks that
are low-dimensional, and exist in a continuous vector space. Its representations encode latent forms
of community membership, and because the method outputs useful intermediate representations, it
can adapt to changing network topology.

2.4 Method

In this section we discuss the main components of our algorithm. We also present several variants
of our approach and discuss their merits.

2.4.1 Overview

As in any language modeling algorithm, the only required input is a corpus and a vocabulary V .
DEEPWALK considers a set of short truncated random walks its own corpus, and the graph vertices
as its own vocabulary (V = V ). While it is beneficial to know V and the frequency distribution of
vertices in the random walks ahead of the training, it is not necessary for the algorithm to work as
we will show in 2.4.2.
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(a) Random walk generation. (b) Representation mapping. (c) Hierarchical Softmax.

Figure 2.3: Overview of DEEPWALK. We slide a window of length 2w + 1 over the random
walk Wv4 , mapping the central vertex v1 to its representation Φ(v1). Hierarchical Softmax
factors out Pr(v3 | Φ(v1)) and Pr(v5 | Φ(v1)) over sequences of probability distributions
corresponding to the paths starting at the root and ending at v3 and v5. The representation
Φ is updated to maximize the probability of v1 co-occurring with its context {v3, v5}.

2.4.2 Algorithm: DEEPWALK

The algorithm consists of two main components; first a random walk generator, and second, an
update procedure. The random walk generator takes a graph G and samples uniformly a random
vertex vi as the root of the random walkWvi . A walk samples uniformly from the neighbors of
the last vertex visited until the maximum length (t) is reached. While we set the length of our
random walks in the experiments to be fixed, there is no restriction for the random walks to be of
the same length. These walks could have restarts (i.e. a teleport probability of returning back to
their root), but our preliminary results did not show any advantage of using restarts. In practice, our
implementation specifies a number of random walks γ of length t to start at each vertex.

Lines 3-9 in Algorithm 1 shows the core of our approach. The outer loop specifies the number of
times, γ, which we should start random walks at each vertex. We think of each iteration as making
a ‘pass’ over the data and sample one walk per node during this pass. At the start of each pass we
generate a random ordering to traverse the vertices. This is not strictly required, but is well-known
to speed up the convergence of stochastic gradient descent.

In the inner loop, we iterate over all the vertices of the graph. For each vertex vi we generate a
random walk |Wvi | = t, and then use it to update our representations (Line 7). We use the SkipGram
algorithm [92] to update these representations in accordance with our objective function in Eq. 2.3.

SkipGram

SkipGram is a language model that maximizes the co-occurrence probability among the words that
appear within a window, w, in a sentence. It approximates the conditional probability in Equation

11



Algorithm 1 DEEPWALK(G, w, d, γ, t)
Input: graph G(V,E)

window size w
embedding size d
walks per vertex γ
walk length t

Output: matrix of vertex representations Φ ∈ R|V |×d
1: Initialization: Sample Φ from U |V |×d
2: Build a binary Tree T from V
3: for i = 0 to γ do
4: O = Shuffle(V )
5: for each vi ∈ O do
6: Wvi = RandomWalk(G, vi,t)
7: SkipGram(Φ,Wvi , w)
8: end for
9: end for

Algorithm 2 SkipGram(Φ,Wvi , w)
1: for each vj ∈ Wvi do
2: for each uk ∈ Wvi [j − w : j + w] do
3: J(Φ) = − log Pr(uk | Φ(vj))
4: Φ = Φ− α ∗ ∂J

∂Φ

5: end for
6: end for

2.3 using an independence assumption as the following

Pr
(
{vi−w, · · · , vi+w} \ vi | Φ(vi)

)
=

i+w∏
j=i−w
j 6=i

Pr(vj|Φ(vi)) (2.4)

Algorithm 2 iterates over all possible collocations in random walk that appear within the window
w (lines 1-2). For each, we map each vertex vj to its current representation vector Φ(vj) ∈ Rd

(See Figure 2.3b). Given the representation of vj , we would like to maximize the probability of its
neighbors in the walk (line 3). We can learn such a posterior distribution using several choices of
classifiers. For example, modeling the previous problem using logistic regression would result in a
huge number of labels (that is equal to |V |) which could be in millions or billions. Such models
require vast computational resources which could span a whole cluster of computers [15]. To avoid
this necessity and speed up the training time, we instead use the Hierarchical Softmax [95, 97] to
approximate the probability distribution.

12



Hierarchical Softmax

Given that uk ∈ V , calculating Pr(uk | Φ(vj)) in line 3 is not feasible. Computing the partition
function (normalization factor) is expensive, so instead we will factorize the conditional probability
using Hierarchical softmax. We assign the vertices to the leaves of a binary tree, turning the
prediction problem into maximizing the probability of a specific path in the hierarchy (See Figure
2.3c). If the path to vertex uk is identified by a sequence of tree nodes (b0, b1, . . . , bdlog |V |e), (b0 =
root, bdlog |V |e = uk) then

Pr(uk | Φ(vj)) =

dlog |V |e∏
l=1

Pr(bl | Φ(vj)) (2.5)

Now, Pr(bl | Φ(vj)) could be modeled by a binary classifier that is assigned to the parent of the
node bl as Equation 2.6 shows,

Pr(bl | Φ(vj) = 1/(1 + e−Φ(vj)·Ψ(bl)) (2.6)

where Ψ(bl) ∈ Rd is the representation assigned to tree node bl’s parent. This reduces the computa-
tional complexity of calculating Pr(uk | Φ(vj)) from O(|V |) to O(log |V |).

We can speed up the training process further, by assigning shorter paths to the frequent vertices
in the random walks. Huffman coding is used to reduce the access time of frequent elements in the
tree.

Optimization

The model parameter set is θ = {Φ,Ψ} where the size of each is O(d|V |). Stochastic gradient
descent (SGD) [22] is used to optimize these parameters (Line 4, Algorithm 2). The derivatives are
estimated using the back-propagation algorithm. The learning rate α for SGD is initially set to 2.5%
at the beginning of the training and then decreased linearly with the number of vertices that are seen
so far.

2.4.3 Parallelizability
As shown in Figure 2.2 the frequency distribution of vertices in random walks of social network
and words in a language both follow a power law. This results in a long tail of infrequent vertices,
therefore, the updates that affect Φ will be sparse in nature. This allows us to use asynchronous
version of stochastic gradient descent (ASGD), in the multi-worker case. Given that our updates are
sparse and we do not acquire a lock to access the model shared parameters, ASGD will achieve
an optimal rate of convergence [121]. While we run experiments on one machine using multiple
threads, it has been demonstrated that this technique is highly scalable, and can be used in very large
scale machine learning [37]. Figure 2.4 presents the effects of parallelizing DEEPWALK. It shows
the speed up in processing BLOGCATALOG and FLICKR networks is consistent as we increase the
number of workers to 8 (Figure 2.4a). It also shows that there is no loss of predictive performance
relative to the running DEEPWALK serially (Figure 2.4b).
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Name BLOGCATALOG FLICKR YOUTUBE

|V | 10,312 80,513 1,138,499
|E| 333,983 5,899,882 2,990,443
|Y| 39 195 47

Labels Interests Groups Groups

Table 2.1: Graphs used in our experiments.

2.4.4 Algorithm Variants

Here we discuss some variants of our proposed method, which we believe may be of interest.

Streaming

One interesting variant of this method is a streaming approach, which could be implemented without
knowledge of the entire graph. In this variant small walks from the graph are passed directly to the
representation learning code, and the model is updated directly. Some modifications to the learning
process will also be necessary. First, using a decaying learning rate may no longer be desirable as
it assumes the knowledge of the total corpus size. Instead, we can initialize the learning rate α to
a small constant value. This will take longer to learn, but may be worth it in some applications.
Second, we cannot necessarily build a tree of parameters any more. If the cardinality of V is known
(or can be bounded), we can build the Hierarchical Softmax tree for that maximum value. Vertices
can be assigned to one of the remaining leaves when they are first seen. If we have the ability to
estimate the vertex frequency a priori, we can also still use Huffman coding to decrease frequent
element access times.

Non-random walks

Some graphs are created as a by-product of agents interacting with a sequence of elements (e.g.
users’ navigation of pages on a website). When a graph is created by such a stream of non-random
walks, we can use this process to feed the modeling phase directly. Graphs sampled in this way will
not only capture information related to network structure, but also to the frequency at which paths
are traversed.

In our view, this variant also encompasses language modeling. Sentences can be viewed as
purposed walks through an appropriately designed language network, and language models like
SkipGram are designed to capture this behavior.

This approach can be combined with the streaming variant (Section 2.4.4) to train features on a
continually evolving network without ever explicitly constructing the entire graph. Maintaining
representations with this technique could enable web-scale classification without the hassles of
dealing with a web-scale graph.
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Figure 2.4: Effects of parallelizing DEEPWALK

2.5 Experimental Design
In this section we provide an overview of the datasets and methods which we will use in our
experiments. Code and data to reproduce our results will be available at the first author’s website.1

2.5.1 Datasets
An overview of the graphs we consider in our experiments is given in Figure 2.1.
• BLOGCATALOG[132] is a network of social relationships provided by blogger authors. The

labels represent the topic categories provided by the authors.

• FLICKR[132] is a network of the contacts between users of the photo sharing website. The
labels represent the interest groups of the users such as ‘black and white photos’.

• YOUTUBE[133] is a social network between users of the popular video sharing website. The
labels here represent groups of viewers that enjoy common video genres (e.g. anime and
wrestling).

2.5.2 Baseline Methods
To validate the performance of our approach we compare it against a number of baselines:
• SpectralClustering[134]: This method generates a representation in Rd from the d-smallest

eigenvectors of L̃, the normalized graph Laplacian of G. Utilizing the eigenvectors of L̃
implicitly assumes that graph cuts will be useful for classification.

• Modularity[132]: This method generates a representation in Rd from the top-d eigenvectors
of B, the Modularity matrix of G. The eigenvectors of B encode information about modular
graph partitions of G[106]. Using them as features assumes that modular graph partitions
will be useful for classification.

1http://bit.ly/deepwalk
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% Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DEEPWALK 36.00 38.20 39.60 40.30 41.00 41.30 41.50 41.50 42.00
SpectralClustering 31.06 34.95 37.27 38.93 39.97 40.99 41.66 42.42 42.62
EdgeCluster 27.94 30.76 31.85 32.99 34.12 35.00 34.63 35.99 36.29

Micro-F1(%) Modularity 27.35 30.74 31.77 32.97 34.09 36.13 36.08 37.23 38.18
wvRN 19.51 24.34 25.62 28.82 30.37 31.81 32.19 33.33 34.28
Majority 16.51 16.66 16.61 16.70 16.91 16.99 16.92 16.49 17.26

DEEPWALK 21.30 23.80 25.30 26.30 27.30 27.60 27.90 28.20 28.90
SpectralClustering 19.14 23.57 25.97 27.46 28.31 29.46 30.13 31.38 31.78
EdgeCluster 16.16 19.16 20.48 22.00 23.00 23.64 23.82 24.61 24.92

Macro-F1(%) Modularity 17.36 20.00 20.80 21.85 22.65 23.41 23.89 24.20 24.97
wvRN 6.25 10.13 11.64 14.24 15.86 17.18 17.98 18.86 19.57
Majority 2.52 2.55 2.52 2.58 2.58 2.63 2.61 2.48 2.62

Table 2.2: Multi-label classification results in BLOGCATALOG

% Labeled Nodes 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

DEEPWALK 32.4 34.6 35.9 36.7 37.2 37.7 38.1 38.3 38.5 38.7
SpectralClustering 27.43 30.11 31.63 32.69 33.31 33.95 34.46 34.81 35.14 35.41

Micro-F1(%) EdgeCluster 25.75 28.53 29.14 30.31 30.85 31.53 31.75 31.76 32.19 32.84
Modularity 22.75 25.29 27.3 27.6 28.05 29.33 29.43 28.89 29.17 29.2
wvRN 17.7 14.43 15.72 20.97 19.83 19.42 19.22 21.25 22.51 22.73
Majority 16.34 16.31 16.34 16.46 16.65 16.44 16.38 16.62 16.67 16.71

DEEPWALK 14.0 17.3 19.6 21.1 22.1 22.9 23.6 24.1 24.6 25.0
SpectralClustering 13.84 17.49 19.44 20.75 21.60 22.36 23.01 23.36 23.82 24.05

Macro-F1(%) EdgeCluster 10.52 14.10 15.91 16.72 18.01 18.54 19.54 20.18 20.78 20.85
Modularity 10.21 13.37 15.24 15.11 16.14 16.64 17.02 17.1 17.14 17.12
wvRN 1.53 2.46 2.91 3.47 4.95 5.56 5.82 6.59 8.00 7.26
Majority 0.45 0.44 0.45 0.46 0.47 0.44 0.45 0.47 0.47 0.47

Table 2.3: Multi-label classification results in FLICKR

• EdgeCluster[133]: This method uses k-means clustering to cluster the adjacency matrix of
G. Its has been shown to perform comparably to the Modularity method, with the added
advantage of scaling to graphs which are too large for spectral decomposition.

• wvRN[83]: The weighted-vote Relational Neighbor is a relational classifier. Given the
neighborhood Ni of vertex vi, wvRN estimates Pr(yi|Ni) with the (appropriately normal-
ized) weighted mean of its neighbors (i.e Pr(yi|Ni) = 1

Z

∑
vj∈Ni

wij Pr(yj | Nj)). It has
shown surprisingly good performance in real networks, and has been advocated as a sensible
relational classification baseline [84].

• Majority: This naı̈ve method simply chooses the most frequent labels in the training set.

2.6 Experiments
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% Labeled Nodes 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

DEEPWALK 37.95 39.28 40.08 40.78 41.32 41.72 42.12 42.48 42.78 43.05
SpectralClustering — — — — — — — — — —

Micro-F1(%) EdgeCluster 23.90 31.68 35.53 36.76 37.81 38.63 38.94 39.46 39.92 40.07
Modularity — — — — — — — — — —
wvRN 26.79 29.18 33.1 32.88 35.76 37.38 38.21 37.75 38.68 39.42
Majority 24.90 24.84 25.25 25.23 25.22 25.33 25.31 25.34 25.38 25.38

DEEPWALK 29.22 31.83 33.06 33.90 34.35 34.66 34.96 35.22 35.42 35.67
SpectralClustering — — — — — — — — — —

Macro-F1(%) EdgeCluster 19.48 25.01 28.15 29.17 29.82 30.65 30.75 31.23 31.45 31.54
Modularity — — — — — — — — — —
wvRN 13.15 15.78 19.66 20.9 23.31 25.43 27.08 26.48 28.33 28.89
Majority 6.12 5.86 6.21 6.1 6.07 6.19 6.17 6.16 6.18 6.19

Table 2.4: Multi-label classification results in YOUTUBE

In this section we present an experimental analysis of our method. We thoroughly evaluate it on
a number of multi-label classification tasks, and analyze its sensitivity across several parameters.

2.6.1 Multi-Label Classification

To facilitate the comparison between our method and the relevant baselines, we use the exact same
datasets and experimental procedure as in [132, 133]. Specifically, we randomly sample a portion
(TR) of the labeled nodes, and use them as training data. The rest of the nodes are used as test. We
repeat this process 10 times, and report the average performance in terms of both Macro-F1 and
Micro-F1. When possible we report the original results [132, 133] here directly.

For all models we use a one-vs-rest logistic regression implemented by LibLinear [43] extended
to return the most probable labels as in [132]. We present results for DEEPWALK with (γ = 80,
w = 10, d = 128). The results for (SpectralClustering, Modularity, EdgeCluster) use Tang and
Liu’s preferred dimensionality, d = 500.

BlogCatalog

In this experiment we increase the training ratio (TR) on the BLOGCATALOG network from 10% to
90%. Our results are presented in Table 2.2. Numbers in bold represent the highest performance in
each column.

DEEPWALK performs consistently better than EdgeCluster, Modularity, and wvRN. In fact,
when trained with only 20% of the nodes labeled, DEEPWALK performs better than these approaches
when they are given 90% of the data. The performance of SpectralClustering proves much more
competitive, but DEEPWALK still outperforms when labeled data is sparse on both Macro-F1

(TR ≤ 20%) and Micro-F1 (TR ≤ 60%).
This strong performance when only small fractions of the graph are labeled is a core strength of

our approach. In the following experiments, we investigate the performance of our representations
on even more sparsely labeled graphs.
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Figure 2.5: Parameter Sensitivity Study
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Flickr

In this experiment we vary the training ratio (TR) on the FLICKR network from 1% to 10%.
This corresponds to having approximately 800 to 8,000 nodes labeled for classification in the
entire network. Table 2.3 presents our results, which are consistent with the previous experiment.
DEEPWALK outperforms all baselines by at least 3% with respect to Micro-F1. Additionally, its
Micro-F1 performance when only 3% of the graph is labeled beats all other methods even when
they have been given 10% of the data. In other words, DEEPWALK can outperform the baselines
with 60% less training data. It also performs quite well in Macro-F1, initially performing close to
SpectralClustering, but distancing itself to a 1% improvement.

YouTube

The YOUTUBE network is considerably larger than the previous ones we have experimented on, and
its size prevents two of our baseline methods (SpectralClustering and Modularity) from running on
it. It is much closer to a real world graph than those we have previously considered.

The results of varying the training ratio (TR) from 1% to 10% are presented in Table 2.4.
They show that DEEPWALK significantly outperforms the scalable baseline for creating graph
representations, EdgeCluster. When 1% of the labeled nodes are used for test, the Micro-F1

improves by 14%. The Macro-F1 shows a corresponding 10% increase. This lead narrows as the
training data increases, but DEEPWALK ends with a 3% lead in Micro-F1, and an impressive 5%
improvement in Macro-F1.

This experiment showcases the performance benefits that can occur from using social represen-
tation learning for multi-label classification. DEEPWALK, can scale to large graphs, and performs
exceedingly well in such a sparsely labeled environment.

2.6.2 Parameter Sensitivity
In order to evaluate how changes to the parameterization of DEEPWALK effect its performance on
classification tasks, we conducted experiments on two multi-label classifications tasks (FLICKR, and
BLOGCATALOG). In the interest of brevity, we have fixed the window size and the walk length to
emphasize local structure (w = 10, t = 40). We then vary the number of latent dimensions (d), the
number of walks started per vertex (γ), and the amount of training data available (TR) to determine
their impact on the network classification performance.

Effect of Dimensionality

Figure 2.5a shows the effects of increasing the number of latent dimensions available to our model.
Figures 2.5a1 and 2.5a3 examine the effects of varying the dimensionality and training ratio.

The performance is quite consistent between both FLICKR and BLOGCATALOG and show that the
optimal dimensionality for a model is dependent on the number of training examples. (Note that 1%
of FLICKR has approximately as many labeled examples as 10% of BLOGCATALOG).

Figures 2.5a2 and 2.5a4 examine the effects of varying the dimensionality and number of walks
per vertex. The relative performance between dimensions is relatively stable across different values
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of γ. These charts have two interesting observations. The first is that there is most of the benefit
is accomplished by starting γ = 30 walks per node in both graphs. The second is that the relative
difference between different values of γ is quite consistent between the two graphs. FLICKR has an
order of magnitude more edges than BLOGCATALOG, and we find this behavior interesting.

These experiments show that our method can make useful models of various sizes. They also
show that the performance of the model depends on the number of random walks it has seen, and
the appropriate dimensionality of the model depends on the training examples available.

Effect of sampling frequency

Figure 2.5b shows the effects of increasing γ, the number of random walks that we start from each
vertex.

The results are very consistent for different dimensions (Fig. 2.5b1, Fig. 2.5b3) and the amount
of training data (Fig. 2.5b2, Fig. 2.5b4). Initially, increasing γ has a big effect in the results, but this
effect quickly slows (γ > 10). These results demonstrate that we are able to learn meaningful latent
representations for vertices after only a small number of random walks.

2.7 Related Work
The main differences between our proposed method and previous work can be summarized as
follows:

1. We learn our latent social representations, instead of computing statistics related to centrality
[48] or partitioning [134].

2. We do not attempt to extend the classification procedure itself (through collective inference
[125] or graph kernels [69]).

3. We propose a scalable online method which uses only local information. Most methods
require global information and are offline [61, 132–134].

4. We apply unsupervised representation learning to graphs.
In this section we discuss related work in network classification and unsupervised feature learning.

2.7.1 Relational Learning

Relational classification (or collective classification) methods [52, 83, 102] use links between data
items as part of the classification process. Exact inference in the collective classification problem is
NP-hard, and solutions have focused on the use of approximate inference algorithm which may not
be guaranteed to converge [125].

The most relevant relational classification algorithms to our work incorporate community
information by learning clusters [103], by adding edges between nearby nodes [49], by using
PageRank [81], or by extending relational classification to take additional features into account
[144]. Our work takes a substantially different approach. Instead of a new approximation inference
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algorithm, we propose a procedure which learns representations of network structure which can
then be used by existing inference procedure (including iterative ones).

A number of techniques for generating features from graphs have also been proposed [48, 61,
132–134]. In contrast to these methods, we frame the feature creation procedure as a representation
learning problem.

Graph Kernels [142] have been proposed as a way to use relational data as part of the classifica-
tion process, but are quite slow unless approximated [67]. Our approach is complementary; instead
of encoding the structure as part of a kernel function, we learn a representation which allows them
to be used directly as features for any classification method.

2.7.2 Unsupervised Feature Learning
Distributed representations have been proposed to model structural relationship between concepts
[62]. These representations are trained by the back-propagation and gradient descent. Computational
costs and numerical instability led to these techniques to be abandoned for almost a decade. Recently,
distributed computing allowed for larger models to be trained [15], and the growth of data for
unsupervised learning algorithms to emerge [42]. Distributed representations usually are trained
through neural networks, these networks have made advancements in diverse fields such as computer
vision [70], speech recognition [36], and natural language processing [5, 33].

2.8 Conclusions
We propose DEEPWALK, a novel approach for learning latent social representations of vertices.
Using local information from truncated random walks as input, our method learns a representation
which encodes structural regularities. Experiments on a variety of different graphs illustrate the
effectiveness of our approach on challenging multi-label classification tasks.

As an online algorithm, DEEPWALK is also scalable. Our results show that we can create
meaningful representations for graphs which are too large for standard spectral methods. On such
large graphs, our method significantly outperforms other methods designed to operate for sparsity.
We also show that our approach is parallelizable, allowing workers to update different parts of the
model concurrently.

In addition to being effective and scalable, our approach is also an appealing generalization of
language modeling. This connection is mutually beneficial. Advances in language modeling may
continue to generate improved latent representations for networks. In our view, language modeling
is actually sampling from an unobservable language graph. We believe that insights obtained from
modeling observable graphs may in turn yield improvements to modeling unobservable ones.

Our future work in the area will focus on investigating this duality further, using our results to
improve language modeling, and strengthening the theoretical justifications of the method.
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Chapter 3

Walklets: Multiscale Graph Embeddings for
Interpretable Network Classification

3.1 Introduction

Human society is inherently hierarchical. Each individual is a member of several communi-
ties, which range from small (families, friends), to medium (organizations such as schools and
businesses)), to large (nation states, set of all people who speak a common language, etc.).

As the scale of these relationships change, so too can their topology. For example, consider a
university student on a social network (as illustrated in Figure 3.1a). They may be very tightly tied
to their friends and immediate family, and form dense graph structures with these individuals (e.g.
near cliques). However they will be more loosely tied to the average student at their university – in
fact, they will have no direct social connection to the majority of their fellow students. Finally, they
will have relatively few ties to all individuals in their nation, but still will share many attributes due
to a common culture.

The prediction tasks on social networks also vary from the specific (e.g. a user’s movie interests)
to attributes associated with the more general communities a user is a member of (e.g. past employers
or schools). Previous work on social representation learning has treated the process as a ‘one-size
fits all’ problem, where a single social representation is used for all predictions made for a single
user. In our view, it is desirable to have a family of representations which capture the full range of
an individual’s community membership.

In this paper, we study the problem of embedding a large graph into a finite number of dimensions
d ∈ Rd that capture the latent hierarchy of communities which an individual participates in. These
latent multiscale representations of the graph are useful for machine learning tasks in social networks.
At prediction time, the representations can be leveraged (both individually, or combined) to provide
a more comprehensive model of the user’s affiliations. The difference between similarity (distance
in the latent space) over varying representation scales is illustrated in Figures 3.1b and 3.1c.

This work originally appeared as “Bryan Perozzi, Vivek Kulkarni, and Steven Skiena. Walklets: Multiscale graph
embeddings for interpretable network classification. In (submitted), 2016.”
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Friends

Classmates

Society

(a) A student (in red) is a
member of several increasing
larger social communities.

(b) WALKLETS Fine Represen-
tation

(c) WALKLETS Coarse Repre-
sentation

Figure 3.1: Our method captures multiple scales of social relationships like those shown in
Figure 3.1a. This is illustrated as a heatmap on the original graph in Figures 3.1b,3.1c. Color
depicts cosine distance to a single vertex, with red indicating close vertices (low distance), and
blue far vertices (high distance). Figure 3.1b: Only immediate are near the input vertex in a
fine grained representation. Figure 3.1c: In a coarse representation, all vertices in the local
cluster of the graph are close to the input vertex. Subgraph from the Cora citation network.

Recently, there has been a surge of interest in representation learning for social networks,
primarily based around neural matrix factorization [25, 117, 131]. These methods have extended
models developed for representation learning (or deep learning) in natural language processing
for analysis of social and information networks, and demonstrated strong task performance on
semi-supervised network classification problems.

Despite their strong task performance, we find that these methods leave much to be desired. First,
initial work only addressed the problem of learning representations at multiple scales indirectly,
either as an artifact of the learning process [117] or via an unintuitive combination of different
objective functions [131]. More recently, an approach for learning a multiscale representation [25]
has been proposed, but its computational complexity renders it intractable for most real world graphs.
Second, all these methods have centered on a ‘one size fits all’ approach to network representation
learning, which mask the nuanced information which can be present at each individual scale of
graph representation.

In this work, we propose Multiscale Network Embedding (WALKLETS), an algorithm for
learning social representations which capture multiple scales of relationships between vertices in a
graph. Unlike existing work, WALKLETS’s dimensions have meaning, allows for informed network
classification, and visualization of relationships captured. The method itself is scalable, and can be
run on graphs with millions of vertices.

Specifically, our contributions are the following:

1. Multiscale Representation Learning: We propose a graph embedding algorithm which
explicitly captures multiple scales of relationships in networked data.

2. Evaluation: We extensively evaluate our representations on multilabel classification tasks
on several social networks (like LastFM, Twitter, and YouTube). WALKLETS outperforms
several challenging baselines like DeepWalk [117], by up to 5 points of Micro-F1.
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3. Visualization and Analysis: WALKLETS preserves multiple scales of latent representations,
which we use to analyzing the multiscale effects present in large graphs.

The rest of the paper is arranged as follows. In Section 3.2 we present a brief overview of
representation learning for social networks, and expound on their use for graph classification
problems. We follow this by analytically deriving the basis WALKLETS, our approach for Multiscale
Social Representation Learning in Section 3.3. We outline ours experiments in Section 3.4, and
present their results in Section 3.5. We close with a discussion of related work in Section 3.7, and
our conclusions.

3.2 Preliminaries
In this section, we briefly discuss necessary preliminaries of neural representation learning as it
relates to our work.

3.2.1 Problem Definition
Let G = (V,E), where V represent the members of the network, E are their connections, E ⊆
(V × V ), and GL = (V,E,X, Y ) is a partially labeled social network, with attributes X ∈ R|V |×S
where S is the size of the feature space for each attribute vector, and Y ∈ R|V |×|Y|, Y is the set of
labels. We will refer to G’s adjacency matrix A, A ∈ R|V |×|V |. The entry Aij is non-zero if and only
if there is an edge (i, j) ∈ E.

Our goal is to learn a family of k successively coarser social representations,XE1 , XE2 , . . . , XEk
,

XEk
∈ R|V |×d. In these representations, each vertex vi ∈ V is represented by d latent dimensions

which encodes social similarity in continuous space. Each level of the family encodes a different
view of social similarity, corresponding to shared membership in latent communities of differing
scales.

Using these structural features, we will learn a hypothesis H that maps the representations of
XE to the labels set Y . This allows generalization (i.e. to infer labels for vertices in G which do not
have labels).

3.2.2 Representation Learning
The goal of representation learning is to infer a mapping function Φ: v ∈ V 7→ R|V |×d. This
mapping Φ represents the latent social representation associated with each vertex v in the graph. (In
practice, we represent Φ by a |V | × d matrix of free parameters, which will serve later on as our
XE).

In our previous work, [117] we introduce the concept of modeling a vertex as a function of its
node co-occurrences in a truncated random walk. These sequences capture the diffusion process
around each vertex in the graph, and encode local community structure. Consequently the goal, is
to estimate the likelihood of a vertex vi co-occurring with its local neighborhood:

Pr
(
vi |

(
Φ(v1),Φ(v2), · · · ,Φ(vi−1)

))
(3.1)
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However, as the walk length grows, computing this conditional probability becomes unfeasible.
To address this computational complexity, we proposed to relax the problem by following [92],

by ignoring the order of neighboring vertices, and instead of using the context to predict a missing
vertex, it uses one vertex to predict its local structure. In terms of vertex representation modeling,
this yields the optimization problem:

minimize
Φ

− log Pr
(
{vi−w, · · · , vi+w} \ vi | Φ(vi)

)
(3.2)

Interestingly, this optimization is directly equivalent to learning a low rank approximation of the
adjacency matrix, A.

3.2.3 Neural Matrix Factorization
A commonly proposed approach to model the probability of a node vi co-occurring with vj uses a
softmax to map the pairwise similarity to a probability space,

Pr(vi|vj) =
exp(Φ(vi) · Φ(vj))∑
j∈V exp(Φ(vi) · Φ(vj)

. (3.3)

Unfortunately, calculating the denominator in 3.3 is computational expensive.
Alternatively, noise-contrastive estimation [59] has been proposed as a relaxation of (3.3)

[25, 92]. It models the probability of a vertex co-occurrence pair (vi, vj) appearing as:

P ((vi, vj)) = σ(Φ(vi) · Φ(vj)) =
1

1 + e−Φ(vi)·Φ(vj)
(3.4)

It can be shown that both of these probabilistic models correspond to implicitly factoring a transfor-
mation of the adjacency matrix [77, 147, 150].

Social Representations as Matrix Factorization

To motivate our method, we briefly discuss the matrices which prior work on learning social
representations are implicitly factoring. Specifically, we discuss our closest related work - DeepWalk
[117], and LINE [131].1

DeepWalk: A closed form solution which describes the implicit matrix factorization performed
by DeepWalk is possible, as noted by [25, 150]. They derive a formulation for DeepWalk with
Hierarchical Softmax (DWHS) showing that it is factoring a matrix M containing the random walk
transition matrix raised to the t power. In other words, the entry Mij is the expectation of a path of
length t started at node i, ending at node j.

MDWHS
ij = log

#(vi, vj)

#(vi)
= log

[ei(A+ A2 + · · ·+ At)]j
t

(3.5)

1We recently became aware of GraRep [25] - independent work, which draws on similar insights to propose
multiscale models. We discuss differences between it and our approach further in Sections 3.5, 3.6.3, and 3.7.
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Figure 3.2: Overview of WALKLETS. Our method samples edges from higher powers of the
adjacency matrix using a rooted random walk and skips over vertices. An edge sampled from
Ak represents a paths of length k in the original graph.

where #(vi, vj) is counting function, that counts the occurrences of pair (vi, vj), and ei is a |V |-
dimensional vector which serves as an indicator function (having a 1 in the i-th row, and 0s
elsewhere).
LINE: Similarly, the second order dependencies modeled by LINE can be shown to be equivalent
to factorizing a matrix M whose entries are given by:

MSGNS
ij = PMI(vi, vj)− log k = log

(
∑

Ai∩Aj
1)|E|

(
∑

Ai
1)(
∑

Aj
1)
− log k (3.6)

where PMI(x, y) = log P (x,y)
P (x)P (y)

, the Pointwise Mutual Information between discrete observations of
x and y (in this case, the edges present in A), and k is a constant.

3.3 Multi-scale Neural Matrix Decomposition

In this section we introduce our algorithm for creating multiscale network representations. We
begin by describing our model for capturing different representations scales. We follow this with a
discussion of concerns, like search strategy and optimization. Finally, we perform a case study on a
small real world citation network, which illustrates the different scales of network representations
captured through our method.

3.3.1 Model Description

Here, we build on the intuition developed in section 3.2.3 and formally extend previous methods
in social representation learning to explicitly model the multi-scale effects exhibited in real world
networks.
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(a) Finest Scale: WALK-
LETS(A1)
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(b) WALKLETS(A3)
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(c) Coarsest Scale: WALK-
LETS(A5)

Figure 3.3: The distribution of distances to other vertices from v35 in the Cora network at
different scales of network representation. Coarser representations (such as WALKLETS(A5)
‘flatten’ the distribution, making larger communities close to the source vertex. Graph
heatmap of corresponding distances shown in Figure 3.4.

Multi-scale Properties of DeepWalk

As shown in Eq.(3.5) DeepWalk is implicitly factoring a matrix containing entries of A,A2 . . . , Ak,
where k is the window size over the random walk. Each power of Ak represents a different scale of
network structure (recall, the entries of Akij is the number of paths between nodes i and j of length
k).

It is interesting to see then, that DeepWalk, is already implicitly modeling dependencies of
multiple scales. This shows that the representations learned are capable of capturing long-distance
dependencies between nodes in a social network. Although DeepWalk is expressive enough to
capture these representations, it has limitations:
Not Guaranteed: Multi-scale representations are not necessarily captured, since they are not
explicitly preserved by the objective function. In fact, since DeepWalk will always have more
entries from A than from Ak, (k > 1), it is biased towards representations that preserve the lowest
power of A. To see this, observe that given any random walk of length L, the number of entries
from A is at most L− 1. In general, the number of entries from Ak in a random walk is at most L−1

k
.

This bias towards lower powers of the adjacency matrix is a fundamental weakness, when higher
order powers are the appropriate representations for machine learning tasks on the network. For
example, when classifying a feature correlated with large scale graph structure – such as language
detection on a social network, a coarse-grained representation may offer performance benefits over
a finer representation that preserves individual edges.
Global Representation: Different scales of representation are not independently accessible. That is,
DeepWalk learns one global representation that conflates all possible scales of network relationships.
This is undesirable, as each individual learning task needs to decode the relevant similarity infor-
mation from the global representation. In actuality, an ideal representation for social relationships
would span multiple scales, each one capturing successively broader levels of latent community
memberships. Each learning task then, is able to utilize the best level of social relationships for its
task. As we will show in Section 3.5, performance on each learning task can be maximized through
a different scale of social representation.

28



(a) WALKLETS(A1) (b) WALKLETS(A3) (c) WALKLETS(A5)

Figure 3.4: Heatmap of cosine distance from vertex v35 (shown by arrow) in the Cora net-
work through a series of successively coarser representations. Close vertices are colored red,
distant vertices are colored blue. Corresponding distributions of vertex distances are shown
above in Figure 3.3.

WALKLETS: Multiple Scales of Random Walks

Building on observations discussed so far, we propose extending the model introduced by [117] to
explictly model multiscale dependencies. Our method operates by factoring powers of the adjacency
matrix A, using recently proposed algorithms for learning representations.

Similar to DeepWalk, we model the network through a series of truncated random walks started
at each node. As discussed in [117], the co-occurrence of two vertices in these truncated random
walks can model the rate of diffusion in the network. However, we make a key change to the
sampling procedure. Specifically we choose to skip some of the the nodes in the random walk. In
this way, we form a set of relationships which are sampled from successively higher powers of A.
We denote WALKLETS(A1, . . . , Ak) to represent WALKLETS derived from the A1, . . . , Ak powers
of the adjacency matrix respectively.

Each distinct power forms a corpus in a series of corpora which models a specific distance
dependency in the network. This sampling procedure is illustrated in Figure 3.2.

After partitioning the relationships sampled by scale, we model the probability of observing a
sample vertex vi with a vertex vj as in Eq.(3.3). This implies the following objective function in
order to learn representations for each node vi ∈ V:

J = −
∑

vi,vj∈Ck

logPr(vi|vj), (3.7)

where Ck is the corpus of random walk pairs generated for representation scale k. J seeks to
maximize the log likelihood of vi co-occurring with context node vj . This objective, commonly
referred to as Skipgram, was first proposed for language modeling in [92], and first extended to
network representation learning in [117].
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Loss function Optimization

We optimize the loss function stated in 3.7 using standard back propagation with stochastic gradient
descent. We use the default learning rate as 0.025 and set the size of the embedding d to 128
unless stated otherwise. This can be easily extended to weighted graphs (by adapting the gradient
proportional to the weights). Furthermore techniques like edge sampling [131] can easily be adapted
to our method.

Implicit matrix factorization view

By sampling in this way, we can show that we learn representations of different scales.

Lemma 1. Using DeepWalk on skipped random walks, where the skip factor is set to k (we sample
nodes that are a distance k from each other) implicitly factors a matrix derived from Ak.

Proof. Observe that in a skipped random walk with a skip factor of k, each consecutive node pair vi
and vi+1 are reachable by path of length exactly k and therefore represent edges sampled from Ak.

When we provide DeepWalk with random walks where vi co-occurs with vj only if it is reachable
by path of length k, in Equation 3.5, only the term corresponding to Ak is present. Therefore we
implicitly factor a matrix derived from Ak. This completes the proof.

Search Strategy

Related work [117, 131] have respectively advocated differing strategies for generating social
relationships from edges in a graph. The breath-first strategy successively expands from a single
node of interest and examines all its neighbors. This works well for local neighbors, but faces a
state space explosion as higher levels of expansion (i.e. neighbors of neighbors, etc). The depth-first
strategy uses a random walk, which encodes longer distance information, and may be better for
learning higher order network representations.

We have presented our method by observing relationships of multiple scales through random
walk sampling, which we believe would be more scalable. An alternative search strategy (possible
for smaller graphs), is to directly compute Ak (i.e. all nodes with a path of length k to another) and
use this to sample pairs of vertices.

3.3.2 Case study: Cora

In order to illustrate the effects of network representations at multiple scales, we visualize a small
citation graph Cora, with 2,708 nodes and 5,429 edges.

Figure 3.3 shows a histogram of the distance from a particular node (v35) to every other node’s
social representation. As we examine successively deeper social representations, we see that a group
of proximal nodes develops. These nodes are part of the larger community of papers which v35 is a
member of – specifically, the area of Genetic Algorithms. Should we perform classification
in Cora, this clear separation of network structure enables easier generalization.
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% Labeled Nodes 10% 50% 90%
WALKLETS(A1) 23.51 32.19 34.66
WALKLETS(A2) 37.46∗∗ 41.19∗ 42.59
WALKLETS(A3) 31.23 33.48 34.96
WALKLETS(A1, A2) 24.88 33.23 35.81
WALKLETS(A1, A3) 24.12 32.48 34.96

Micro-F1(%) WALKLETS(A2, A3) 37.49∗∗ 41.09 42.54
WALKLETS(A1, A2, A3) 25.12 33.48 36.02
DeepWalk 34.55 40.77 42.34
LINE 23.65 34.67 37.44
GraRep 37.05 40.95 42.31
WALKLETS(A1) 12.98 17.81 18.74
WALKLETS(A2) 21.65∗∗ 25.89 27.26
WALKLETS(A3) 13.32 16.08 17.08
WALKLETS(A1, A2) 13.88 18.70 19.83
WALKLETS(A1, A3) 13.30 18.03 19.03

Macro-F1(%) WALKLETS(A2, A3) 21.72∗∗ 25.77 27.28
WALKLETS(A1, A2, A3) 14.07 18.93 19.96
DeepWalk 20.44 26.31 27.71
LINE 13.99 20.66 22.36
GraRep 19.93 24.24 25.20

(a) BlogCatalog

% Labeled Nodes 1% 5% 9%
WALKLETS(A1) 47.20 52.29 53.41
WALKLETS(A2) 55.67 61.18 62.28
WALKLETS(A3) 60.49∗∗ 65.36∗∗ 66.24∗∗
WALKLETS(A1, A2) 49.79 59.17 61.19
WALKLETS(A1, A3) 53.61 62.72 64.48

Micro-F1(%) WALKLETS(A2, A3) 54.61 63.60 65.33
WALKLETS(A1, A2, A3) 53.98 63.37 65.18
DeepWalk 54.93 63.45 65.16
LINE 45.03 51.69 53.32
GraRep 63.62 67.47 68.34
WALKLETS(A1) 39.03 45.02 46.56
WALKLETS(A2) 48.20 56.02 57.64
WALKLETS(A3) 53.49 60.92∗ 62.28
WALKLETS(A1, A2) 47.35 55.51 57.35
WALKLETS(A1, A3) 50.98 59.27 61.03

Macro-F1(%) WALKLETS(A2, A3) 52.17 60.38 61.99
WALKLETS(A1, A2, A3) 51.55 60.05 61.75
DeepWalk 52.37 60.37 62.08
LINE 42.73 48.49 49.91
GraRep 59.10 63.83 64.97

(b) DBLP

Table 3.1: Multilabel classification results on BlogCatalog and DBLP. In general, specific
higher order representations improve task performance. On DBLP, (a small, well behaved
graph), the exact multiscale computation performed by GraRep outperforms WALKLETS’s
sampling approach. Numbers greater than DeepWalk are bolded. (*,**) indicates statis-
tically superior performance to DeepWalk at level of (0.05,0.001) using a standard paired
t-test. The best performing scale of representation is highlighted in blue.

This phenomenon is also illustrated by Figure 3.4, which shows a heatmap of distance to node
v35 overlaid on the original network structure. Note how the distance at different scales of network
representation encodes membership in successively larger communities.
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3.4 Experimental Design
In this section, we analyze our method experimentally by applying our method to several online
social networks. In particular, our experiments are motivated by two main goals: First, we seek
to characterize the various multi-scale effects manifested in different real world social networks.
Second, we evaluate the efficacy of our method in capturing their underlying network structure.

We briefly provide an overview of the different graphs we use in our experiments in Table 3.5
and below:

• BlogCatalog is a network consisting of relationships between bloggers. The labels indicate
the topic categories associated with authors.

• DBLP is a co-author graph between researchers in computer science. The labels indicate the
research areas that the researchers publish in (e.g. Artificial Intelligence, or Data Mining).

• Flickr is a network consisting of users on the photograph sharing website Flickr. An
edge in the network indicates a contact relationship between the user pair. The labels indicate
the interest groups of the users (e.g. noir photography)

• YouTube is a social graph between video enthusiasts. The labels indicate shared group
memberships which users have in common (e.g. Anime videos).

Since our method learns latent representations of nodes in a social network in an unsupervised
manner, these representations should generally serve as useful features for a variety of learning tasks.
Therefore, we evaluate our method on one such important task – that of multi-label classification in
social networks. This task is motivated by observing that nodes in a network exhibit memberships
in many of the same groups as their friends. For example, people in a social network are members
of several circles (family, alma-mater, employer, shared hobbies, etc). Modeling and predicting
these varied group memberships is not only essential to understanding real world networks, but also
has several important commercial applications (e.g. more effective ad targeting).

3.4.1 Baseline Methods
To compare with our approach, we consider three recently proposed models for social representation
learning that represent the state of the art.

• DeepWalk [117]: This method learns representations of nodes using a sequence of truncated
random walks. The learned representations capture a linear combination of community
membership at multiple scales.

• LINE [131]: Similar to DeepWalk, this method learns node representations with the Skipgram
objective function. For this baseline we use the LINE 2nd method, which only considers
immediate connections (those in A1).

• GraRep [25]: This multi-scale method generates vertex representations by explicitly comput-
ing successive powers of the random walk transition matrix, and uses the SVD to reduce their
dimensionality.
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Name |V| |E| |Y| Labels
BlogCatalog 10312 333983 39 Topics
DBLP 29199 133664 4 Research Areas
Flickr 80513 5899882 195 Interests
Youtube 1138499 2990443 47 Groups

Figure 3.5: Summary of our datasets.

3.4.2 Multilabel classification

We evaluate our method using the same experimental procedure outlined in [117] We randomly
sample Tf fraction of the labeled nodes and use them as training data with the rest being used as a
test data set. This process is repeated 10 times, after which we report the mean MACRO-F1 and
MICRO-F1 scores. This enables us to compare our method with other relevant baselines easily.

In all cases, we learn a logistic regression model (based on the one vs rest strategy) classification.
We use a defaultL2 regularization penalty ofC = 1 and use the optimization algorithm implemented
by Liblinear [43].

For WALKLETS, we use only the representations generated from walks in π ∈ {1, 2, 3}. The
number of walks N from each node in all cases was set to 1000 while the length of each such walk
L is set to 11. The dimension of embeddings d was 128 in all cases (these settings are also the same
for all baselines). In cases, where we use more than one representation from π, we concatenate all
such features and use PCA to project them down to 128 dimensions.

With this methodology, we control for differences in sizes of training data, and hyper-parameters
that determine the capacity of the representations. This allows for an interpretable comparison with
other methods and baselines.

3.5 Experimental Results

In this section, we present our results of the multi-label classification task on the various datasets
described in Section 3.4. Tables 3.1 and 3.2 show both the Micro-F1 and Macro-F1 performance of
our algorithm and compares with baselines DeepWalk, LINE and GraRep.
BlogCatalog: Table 3.1a shows the multilabel classification results for BlogCatalog. We
observe that WALKLETS using features from A2 outperforms all baselines with respect to Micro-F1.
When labeled data is sparse, (only 10% of the nodes labeled), the difference is statistically significant
at the 0.001 level for both Micro-F1 and Macro-F1. Statistical significance was established using a
paired t-test over the 10 different runs. This translates to an 8% in Micro-F1 and a 5% improvement
in Macro-F1. On this dataset the representations capturing dependencies of length 2 (from A2)
perform better than those of length 1 or 3, which we show by highlighting them in blue.
DBLP: The results from experiments on DBLP are shown in Table 3.1b. We notice that the
representations of A3 provide a statistically significant improvement in Micro-F1 over DeepWalk
and LINE. These coarser representations offer better encoding of the subject areas which an author
publishes in.
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We note that on this task however, WALKLETS fails to outperform the multiscale representation
learned by GraRep. We attribute this to the fact that the DBLP is quite well behaved. First, it
exhibits a highly homophilous behavior, as co-authorship guarantees similar attributes (a shared
publication between two authors must be in the same research area). Second, co-authorship edges
in the graph indicate a high degree of similarity (it is harder to create spurious edges). When
such conditions hold, GraRep’s direct computation of the random walk transition matrix can yield
high performance gains. However, we note that GraRep’s technique requires materializing a dense
matrix, which is inherently unscalable – as illustrated by our remaining datasets.
Flickr: Table 3.2a shows the evaluation on the Flickr dataset. On this dataset, we see that features
derived from A2 offer the best performance on the task for Micro-F1 significantly outperforming all
baselines. The combination of features from A2 and A3 offer the best performance for Macro-F1,
also outperforming all baselines. Specifically we observe that when only 1% of the data is labeled
for training WALKLETS outperforms DeepWalk by 4% in Micro-F1 scores and by 6% Macro-F1.

We note that the most competitive baseline, GraRep, fails to run on this dataset (which has
only 80,513 vertices) as it runs out of memory.2 Our method, instead, handles such large networks
gracefully while yielding competitive results. We discuss this further in Section 3.6
Youtube: Our results for YouTube are presented in Table 3.2b. Once again, our method out-
performs all baseline methods. Specifically, the representations learned from A2 and A3 each
significantly outperform DeepWalk at the p=0.001 level in Micro-F1. Interestingly, the combined
joint representation WALKLETS(A2,A3) offers the best performance with respect to Macro-F1, sig-
nificantly outperforming DeepWalk at the 0.05 level. The best performing individual representations
on this task came from A3, (highlighted in blue). YOUTUBE contains many more vertices than
any of the other datasets we have considered, and it is not surprising that GraRep again runs out
of memory. We note that the online setting of WALKLETS allows learning of representations for
graphs with millions of vertices.

3.6 Discussion
In this section we briefly discuss our results further. We start by addressing the effect of different
representation scales on classification tasks, move to discussing the scalability of our approach, and
finish with an analysis of our sampling procedure.

3.6.1 Multi-scale Effects in Classification

The experimental results presented in Section 3.5 show that no single representation scale provides
the best performance across tasks. Providing explicit representations addresses a limitation shared
by other baseline methods which do not explicitly encode information at multiple scales.

For both Micro-F1 and Macro-F1, features fromA2 performed best on two graphs (BlogCatalog,
Flickr) at all variations of training data. This indicates that paths of length 2 are the appropriate
social dependencies to model shared user interest (topic categories and photography interests,

2Our machine used for experiments was generously apportioned with 384GB RAM.
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respectively). The neighbor-of-neighbor information captured in A2 is especially useful to handle
a network which is missing information. One important case where this occurs is the cold start
problem, where a node has just joined the network and has not had the opportunity to make all of its
connections yet.

Interestingly, representations derived from A3 offered the best task performance on DBLP and
YouTube. On these graphs, the classification performance monotonically increases with the scale
of representation captured. We can surmise that the classification tasks in these graphs do exhibit
hierarchical structure, and that the distinct higher-order representations created through our method
allow exploitation of the correlation between a graph’s hierarchy and a task’s labels.

We emphasize here that our method WALKLETS explicitly models the multi-scale effects present
in social networks, enabling a comprehensive analysis of scales that are most informative for a given
learning task – something which is not possible using methods which learn global representations
[117, 131], or which blend representations of different scales together [25].

3.6.2 Scalability

WALKLETS is an online algorithm which operates on pairs of vertices sampled at different depen-
dency levels from the graph. This online approach approximates the higher-order transition matrices
using sampling, which allows scaling to large network graphs with millions of vertices. This is in
stark contrast to the closest related method, GraRep, which require the materialization of a dense
matrix (Ak and similar matrices rapidly loose their sparsity as k grows, if the graph is connected
and the edge distribution follows a power law). The explicit need to compute the successive powers
of the transition matrix is further complicated by GraRep’s dependence on a SVD – a computation
that does not necessarily scale well to large networks.

3.6.3 Sampling Analysis

Here we analyze the effectiveness of our proposed random walk sampling procedure by comparing
it to the explicit and exact computation made by GraRep. Given a graph G, we use GraRep to
explicitly compute the matrix MGR it factorizes. We then use the random walks used to learn
WALKLETS embeddings to estimate the matrix WALKLETS factorizes MW . We estimate how
close our approximation is to the exact computation MGR by Err = abs(MGR −MW ). Parameter
settings correspond to those described in Section 3.4.2.

In Table 3.6, we report the mean error for an edge (i, j) we observe in Err for multiple scales
on the two graphs small enough to explicitly compute the random walk transition matrix: DBLP and
BlogCatalog. We observe that the mean error and the standard deviation of our approximation
at various scales is low, indicating that our method captures a reasonable approximation of the
random walk transition matrix. Increasing the sample size (by adding random walks) will result in
increasingly better approximations.
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BlogCatalog Errij DBLP Errij
Mean Std.Dev Mean Std.Dev

A1 0.000093 0.003697 0.000014 0.001685
A2 0.000131 0.000764 0.000018 0.001202
A3 0.000148 0.000448 0.000020 0.001064

Figure 3.6: Mean and Standard Deviation of errors observed from sampling the transition
matrices using WALKLETS as compared to exact computation.

3.7 Related Work
The related work falls into three categories: unsupervised feature learning, multiscale graph
clustering, and graph kernels.

Unsupervised Feature Learning Recently proposed methods for social representation learning
[117, 131] use neural network losses proposed by [92] to learn representations which encode vertex
similarity. Unlike our work, these methods do not explicitly preserve the multiscale effects which
occur in networks. The closest related work to ours [25], explicitly models multiscale effects
in networks through an SVD on the random walk transition matrix. Our independent work uses
sampling and online learning to operate on much larger corpora. In addition our work preserves
multiple scales of representation, which can provide both better task performance and modeling
insight.

Distributed representations have also been proposed to model structural relationships in diverse
fields such as computer vision [70], speech recognition [36], and natural language processing
[5, 33].

Multiscale Community Detection Many techniques for detecting multiple scales of discrete
communities in graphs have been proposed [1, 73, 122]. In general, unlike our method, these
approaches seek to return a hard clustering which describes the hierarchy of social relationships in a
graph.

Graph Kernels Graph Kernels [142] have been proposed as a way to use relational data as part
of the classification process, but are quite slow unless approximated [67]. Recent work has applied
neural networks to learn subgraph similarity for graph kernels [149].

3.8 Conclusion
In this work, we introduce multi-scale network representations to specifically capture network
structure at multiple resolutions. The online algorithm we propose, WALKLETS, uses the offsets
between vertices observed in a random walk to learn a series of latent representations, each
of which captures successively larger relationships. WALKLETS utilizes connections between
neural representation learning algorithms and matrix factorization to theoretically underpin the
matrices implicitly factored at each scale. We demonstrate empirically that WALKLETS’s latent
representations encode various scales of social hierarchy, and improves multi-label classification
results over previous methods on a variety of real world graphs. In addition to strong performance,
WALKLETS scales gracefully to arbitrarily large networks.
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We believe that WALKLETSś explicit handling of multiple scales of representations allows
better comprehension of each network’s nuances, and that it lays a strong foundation for developing
future multi-scale network approaches. Our further investigations in this area will seek to develop
additional theoretical backing for our methods.
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% Labeled Nodes 1% 5% 9%
WALKLETS(A1) 24.37 29.99 31.64
WALKLETS(A2) 32.47∗∗ 37.41∗∗ 38.70∗∗
WALKLETS(A3) 31.44 34.87 35.83
WALKLETS(A1, A2) 25.48 31.35 33.03
WALKLETS(A1, A3) 25.11 30.86 32.51

Micro-F1(%) WALKLETS(A2, A3) 32.52∗∗ 37.39∗∗ 38.66∗∗
WALKLETS(A1, A2, A3) 25.93 31.80 33.47
DeepWalk 31.18 36.64 38.18
LINE 25.06 30.55 32.85
GraRep - - -
WALKLETS(A1) 8.92 14.29 16.30
WALKLETS(A2) 14.23 22.57∗ 24.99
WALKLETS(A3) 10.82 17.15 19.22
WALKLETS(A1, A2) 9.70 15.50 17.57
WALKLETS(A1, A3) 9.38 14.96 17.00

Macro-F1(%) WALKLETS(A2, A3) 14.68 22.7∗∗ 25.08∗
WALKLETS(A1, A2, A3) 10.03 15.9 17.99
DeepWalk 13.84 22.26 24.81
LINE 9.16 16.04 18.77
GraRep - - -

(a) Flickr

% Labeled Nodes 1% 5% 9%
WALKLETS(A1) 30.97 38.09 39.63
WALKLETS(A2) 38.55∗∗ 43.33∗∗ 44.33∗∗
WALKLETS(A3) 38.91∗∗ 43.73∗∗ 44.77∗∗
WALKLETS(A1, A2) 28.46 33.74 36.73
WALKLETS(A1, A3) 28.43 33.72 36.67

Micro-F1(%) WALKLETS(A2, A3) 37.19∗ 40.73∗∗ 42.14∗∗
WALKLETS(A1, A2, A3) 29.55 34.70 37.75
DeepWalk 36.17 39.68 41.49
LINE 33.21 36.94 39.19
GraRep - - -
WALKLETS(A1) 15.47 26.24 28.87
WALKLETS(A2) 24.33 32.30 34.38
WALKLETS(A3) 24.74 32.90 35.02∗∗
WALKLETS(A1, A2) 22.71 27.41 29.30
WALKLETS(A1, A3) 22.66 27.36 29.21

Macro-F1(%) WALKLETS(A2, A3) 29.50∗ 33.61∗∗ 34.62∗
WALKLETS(A1, A2, A3) 23.93 28.48 30.48
DeepWalk 28.57 32.82 34.30
LINE 26.11 31.29 33.04
GraRep - - -

(b) YouTube

Table 3.2: Multi-label classification results in Flickr and Youtube. Higher order WALK-
LETS representations outperforms all scalable competitors on these graphs. The most com-
petitive baseline (GraRep) is unable to run on graphs with millions of vertices. Numbers
greater than DeepWalk are bolded. (*,**) indicates statistically superior performance to
DeepWalk at level of (0.05,0.001) using a standard paired t-test. The best performing scale of
representation is highlighted in blue.
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Chapter 4

Scalable Anomaly Ranking of Attributed
Neighborhoods

4.1 Introduction
Graph anomaly detection [4] is a problem of pressing concern, with broad applications including

network security, spam/fraud detection (in social networks, financial networks, etc.), database
integrity, and more.

The essence of graph anomaly detection lies in determining an appropriate anomaly score,
which effectively characterizes the quality of each neighborhood. Quantifying the quality of
graph neighborhoods has long been a research area of interest on its own, where it finds additional
applications in network community detection and graph partitioning. Most of the existing approaches
focus on unattributed or plain graphs and hence only utilize structure.

These structural approaches can be divided by whether they focus on the internal characteri-
zations of a neighborhood, its separability from its boundary, or a combination of both. Measures
which solely use internal information judge quality on intra-group connectivity statistics (e.g. aver-
age degree, edge density) and have been used for dense subgraph mining [28, 139] and anomaly
detection [2]. In contrast to internal measures, boundary-centric measures (e.g. expansion, cut-ratio)
define a neighborhood’s quality only in terms of how separable it is from the rest of the graph.
Perhaps the most popular measures are those which characterize a neighborhood by both its internal
characteristics and its boundary (e.g. modularity [106] and conductance [8]).

In contrast to numerous measures that focus solely on structural quality, there exist only a
few attempts that also utilize attributes. For example, several methods aim to find communities
in attributed graphs that not only are dense but also exhibit attribute coherence [3, 47, 56]. Most
recently, others also quantify the connectivity at the boundary to find outlier nodes or subgraphs in
attributed graphs [58, 114].

In this work, we propose a novel approach to detecting anomalous neighborhoods in attributed
graphs. We define a neighborhood to be high quality when its nodes are (1) internally well

This work originally appeared as “Bryan Perozzi and Leman Akoglu. Scalable anomaly ranking of attributed
neighborhoods. In Proceedings of 2016 SIAM International Conference on Data Mining, SDM ’16, 2016.”
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DBLP Twitter Google+
L1= 0.979, L2= 2.17 L1= 0.724, L2= 1.10 L1 = L2= 0.124

LastFM Facebook Citeseer
L1 = L2= -0.427 L1 = L2= -0.730 L1 = L2= -0.956

Figure 4.1: Example neighborhoods (inner circles) and their boundaries (outer circles) in
our real-world graphs from high (top-left) to low (bottom-right) normality scores. Colors
depict presence (red) or absence (white) of the attribute that maximizes normality for each
neighborhood. Dashed edges are “exonerated”. Results discussed further in Section 4.5.1.

connected and similar to each other on a specific attribute subspace (we call these shared attributes
the neighborhood focus), as well as (2) externally well separated from and/or dissimilar to the
nodes at the boundary. Based on this definition, we introduce a new measure called normality to
quantify the quality of attributed neighborhoods, which carefully utilizes both structure and attributes
together to quantify their internal consistency within, as well as external separability at the boundary.
(See Figure 4.1 for examples of high-to-low normality neighborhoods from various real-world
graphs.) We note that the focus attributes of the neighborhoods may be latent and unknown a priori,
especially in high dimensions. Our method AMEN (for Anomaly Mining of Entity Neighborhoods)
automatically infers the focus attributes and their respective weights, so as to maximize the normality
score of a neighborhood. Neighborhoods with low normality scores, i.e., for which a focus that
yields high normality cannot be found, are considered low quality or anomalous. The main
contributions of our work are summarized as follows:

40



• Neighborhood Quality Score: We propose normality, a new measure to quantify the
quality of the structure (topology) as well as the focus (attributes) of neighborhoods in
attributed graphs. Intuitively, normality quantifies the extent which a neighborhood is
“coherent”; i.e., (i) internally consistent and (ii) externally separated from its boundary.
• Neighborhood Anomaly Mining: We formulate and solve a novel anomaly mining task for

attributed graphs. Our proposed method, AMEN, discovers a given neighborhood’s latent
focus through the unsupervised maximization of its normality. Those neighborhoods for
which a proper focus cannot be identified receive low score, and are deemed as anomalous.
• Scalable Optimization: Our proposed measure lends itself to an efficient convex optimization

procedure. This allows us to analyze real-world graphs with millions of attributes.

Experiments on real-world attributed graphs show the effectiveness of our approach. Specifically,
we show the utility of our measure in spotting anomalies in attributed graphs, where AMEN outper-
forms existing approaches including conductance, density, OddBall [2], and SODA [58] by 16%-
25% mean precision. Furthermore, we qualitatively analyze the high and low normality neigh-
borhoods, and show how our method can effectively contrast differences in correlation between
structure and attributes across graphs.

4.2 Problem Statement

We consider the ranking problem of entity neighborhoods in a graph with node attributes by quality.
More formally, let G = (V , E ,A) denote an attributed graph with |V| = n nodes, |E| = m edges,
and |A| = d node attributes (or features). A neighborhood of G is defined as a set of nodes C ⊆ V
and the edges among them, (i, j) ∈ E , {i, j} ∈ C. We denote by B ⊆ V the set of boundary nodes
that are outside the neighborhood but have at least one edge to some node in the neighborhood, i.e.,
(c, b) ∈ E , c ∈ C, b ∈ B,C ∩B = ∅.

We consider a neighborhood to be of high quality based on two criteria: (i) internal consistency,
and (ii) external separability. Intuitively, a good neighborhood has many internal edges among its
members where they share a set of attributes with similar values. In other words, a common set of
focus attributes makes the neighborhood members highly similar. In addition, a good neighborhood
has either only a few edges at its boundary or many of the cross-edges can be “exonerated”, that is,
the focus attributes that make the neighborhood members similar to one another also make them
dissimilar to or separated from their boundary nodes.

In summary, the Anomaly Mining of Entity Neighborhoods (AMEN) problem is given as
follows:

Given a set of neighborhoods C = {C1, . . . , Ck} from a graphG = (V , E ,A) with node attributes;

Define a measure to quantify the quality of Ci’s based on internal connectivity, boundary Bi, and
attributes A,

Find the neighborhoods of lowest quality.
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(a) “Hub node” effect (b) Neighborhood overlap

Figure 4.2: High-quality neighborhoods can have bad cuts (i.e., many boundary-edges) due
to (a) hub nodes or (b) neighborhood overlap. Our normality measure carefully utilizes a
null model in (a) and node attributes in (b) to exonerate such edges (dashed lines).

4.3 Neighborhood Quality in Attributed Graphs

In this work we propose normality, a new measure of neighborhood quality based on a combi-
nation of internal connectivity, external separability, and attributes. Our measure is motivated by
two properties of real world networks: (i) that there are no good cuts in real world graphs [76], and
(ii) that most user-defined social circles overlap with each other [87]. Together, these imply the
existence of (many) cross-edges between neighborhoods and at their boundary. Figure 4.2 illustrates
two specific scenarios that could drive the emergence of many cross-edges at the boundary of
high-quality neighborhoods in real-world attributed graphs.

The first scenario is where the cross-edges are due to hub nodes in real graphs. Consider
Figure 4.2 (a) as an example, which shows a well structured neighborhood and a hub node in
the host graph. Notice that the hub node connects to a considerable fraction of the nodes in the
neighborhood, creating many cross-edges at its boundary. These edges, however, are not surprising.
In fact, they are expected—as hub nodes by definition connect to a large body of nodes in a graph.
While the quality of such a neighborhood is diminished e.g., based on conductance, our measure
exonerates those edges as unsurprising under a null model, and does not penalize the neighborhood’s
normality score.

Another scenario where good neighborhoods have many cross-edges at their boundary is
when the neighborhoods overlap. An example is given in Figure 4.2 (b) where two overlapping
neighborhoods are shown. Good neighborhoods have many internal edges among their nodes, which
implies that overlap nodes have many edges to non-overlap nodes in both neighborhoods. This in
turn creates many cross-edges for both neighborhoods at their boundary. These edges, however, are
driven by the internal density and should not affect their (external) quality. Provided that overlapping
neighborhoods have sufficiently different focus that makes them separable (e.g., football vs. chess
group), normality exonerates such cross-edges based on the attribute dissimilarity of boundary
nodes to internal nodes. In contrast, measures that ignore attributes (e.g., cut-ratio, conductance,
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etc.) penalize these cross-edges irrespectively. Those measures are expected to perform poorly for
graphs with many overlapping communities such as social networks.

These scenarios illustrate that using both structure and attributes is meaningful and necessary
to quantify the quality of neighborhoods in real graphs. Our normality measure is unique in
its notion of “exoneration” of edges at the boundary, which none of the existing measures exhibit.
Rather, they either completely ignore the boundary or equally penalize all the boundary edges
irrespective of context.

4.3.1 Preliminaries

Our normalitymeasure is inspired by modularity and assortativity, which we first briefly describe
here.

4.3.2 Modularity

Newman’s modularity [106] is a measure of network structure that quantifies the extent which
the network divides into modules (a.k.a. clusters, communities, groups, circles, etc.). Networks
with high modularity have dense connectivity among the nodes within communities, but sparse
connectivity between nodes from different communities. Specifically, modularity is written as

M =
1

2m

∑
ij

(Aij −
kikj
2m

)δ(ci, cj) , (4.1)

where A is the adjacency matrix of graph G, ci denotes the community assignment of node i,
ki denotes its degree, and δ(·) is the indicator function, with value 1 if two nodes belong to the
same community and 0 otherwise. Modularity then, is the difference between the actual and the
expected fraction of edges between nodes in the same community. The larger the difference, the
more modular is the network.

4.3.3 Assortativity

While modularity is defined for non-attributed graphs and solely quantifies structure, a similar
formula called assortativity has been used to measure homophily in attributed networks [105].
Homophily is the extent which the same type of nodes connect to one another, e.g., in social networks
[90]. Specifically, for a graph in which every node is associated with a single, nominal/categorical
attribute (e.g., gender, nationality, etc.), its assortativity is

H(nom) =
1

2m

∑
ij

(Aij −
kikj
2m

)δ(ai, aj) , (4.2)

where this time ai depicts the attribute value of node i (e.g., what nationality i belongs to). As such,
assortativity is the difference between the actual and the expected fraction of edges between nodes
of the same type.
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In a perfectly mixed network, all edges fall between nodes of the same type, and assortativity
is maximum. It takes negative values for disassortative networks, and is 0 for networks in which
attributes and structure are uncorrelated.

4.3.4 Scalar Assortativity

Eq. (4.2) is for networks with a nominal/categorical attribute a, such as gender, nationality, etc.
For a numerical/scalar attribute x, like income, age, etc., one can derive a corresponding formula
using the co-variance of the attribute values among connected nodes. Specifically, cov(xi, xj) =

1
2m

∑
ij Aij(xi − µ)(xj − µ), where µ = 1

2m

∑
i kixi is the mean value of attribute x over the edge-

ends, and ki denotes the degree of node i (note that the average here is over the edges rather than
the nodes). From cov(xi, xj) one can derive the assortativity for numerically attributed networks
(See [107] p.228) as

cov(xi, xj) = H(num) =
1

2m

∑
ij

(Aij −
kikj
2m

)xixj , (4.3)

where assortativity is positive when xi, xj are both small or both large (w.r.t. the mean), and is
negative if they vary in opposite directions. Zero assortativity means the attributes of connected
nodes are uncorrelated.

4.3.5 Modularity vs. Assortativity

The specific applications that leverage these two measures have traditionally been different. Mod-
ularity is often used as an objective function in community detection and graph partitioning
[20, 31, 106, 126]. Assortativity, on the other hand, has often been used in measuring homophily in
social science studies, e.g., in analyzing how school children of different races and genders interact
[96], and how people from various nationalities are segregated in residential areas [86].

Nevertheless, despite the differences between modularity and assortativity, the two quantities
are related. It was observed that assortative networks are likely more modular and tend to break
into communities in which “like is connected to like” [108]. In other words, one can think of
assortativity as a driving force of modular structure in networks—one that influences the emergence
of communities.

4.3.6 Proposed Measure

Next we formally introduce normality, our new measure to quantify the quality of attributed
neighborhoods. Normality is inspired by Newman’s modularity and assortativity [105, 106] but
exhibits key differences. First, normality utilizes both structure and attributes together. Second,
its formulation generalizes to graphs with multiple node attributes (as opposed to assortativity which
is defined only for a single node attribute). Our measure is built upon two intuitive criteria that
define a high quality attributed neighborhood, (1) internal consistency and (2) external separability.
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Internal consistency:

To quantify the internal consistency of a neighborhood, we propose to generalize scalar assortativity
(Eq. (4.3)) which is defined over a graph with a single attribute to a set of nodes with multiple
attributes. The internal consistency I of a neighborhood C is then written as

I = cov(xi,xj) =

|A|∑
f=1

( ∑
i∈C,j∈C

(
Aij −

kikj
2m

)
xi(f)xj(f)

)

=
∑

i∈C,j∈C

(
Aij −

kikj
2m

) |A|∑
f=1

xi(f)xj(f)

=
∑

i∈C,j∈C

(
Aij −

kikj
2m

)
xi · xj (4.4)

where A is the adjacency matrix of graph G, ki denotes node i’s degree, and xi is the vector of
attributes that node i is associated with.

We remark that xi · xj translates to the dot-product similarity between the attribute vectors of
neighborhood members. However, it treats all of the attributes as equally important in quantifying
the similarity among nodes. In general, it is more reasonable to assume that the neighborhood
members come together around a few common attributes (e.g., same school and same hobby). This is
expected especially in very high dimensions. We refer to those attributes upon which neighborhood
members agree, i.e. have similar values, as the focus (attributes) of a neighborhood.

Therefore, we modify the internal consistency score by introducing a non-negative weight vector
w to compute the weighted node similarities as

I =
∑

i∈C,j∈C

(
Aij −

kikj
2m

)
s(xi,xj|w) , (4.5)

for similarity s(xi,xj|w) = wT · (xi ◦ xj), where ◦ denotes the Hadamard (element-wise) product,
and w is a vector with the attribute weights. This corresponds to weighted dot-product similarity,
(w1/2 ◦ xi)

T · (w1/2 ◦ xj). We expect w to be sparse, in which only a few attributes corresponding
to the neighborhood focus have large values and zero elsewhere.

Note that each neighborhood C is associated with its own weight vector wC, i.e. focus, which
is potentially different across neighborhoods. Moreover, the attribute weights are often latent. For
defining our quality criteria we can assume w is known. Later in Section 4.4 we will show that
thanks to our formulation, we can infer this weight vector so as to make a given neighborhood as
internally consistent and externally well-separated as possible. In the following we discuss the
properties captured by Eq. (4.5).

First, notice that the internal consistency is decreased by missing edges inside a neighborhood,
as Aij = 0 for (i, j) /∈ E . Second, the existence of an edge is rewarded as much as the “surprise” of
the edge. Specifically, kikj

2m
denotes the probability that two nodes of degrees ki and kj are connected

to each other by chance in a random network with the same degree distribution as the original graph
[106]. As such, we define the surprise of an edge (i, j) ∈ E as (1− kikj

2m
). The smaller kikj

2m
is for
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an existing edge inside a neighborhood, the more surprising it is and the more it contributes to the
quality of the neighborhood.

These two properties quantify the structure of the neighborhood. On the other hand, the
similarity function quantifies the attribute coherence. As a result, the more similar the neighborhood
nodes can be made by some choice of w, the higher I becomes. If no such weights can be found,
internal consistency reduces even if the community is a complete graph with no missing edges.

Overall, a neighborhood with (1) many existing and (2) “surprising” internal edges among
its members where (3) (a subset of) attributes make them highly similar receives a high internal
consistency score.

External separability:

Besides being internally consistent, we consider a neighborhood to be of high quality if it is also
well-separated from its boundary. In particular, a well-separated neighborhood either has (1) few
cross-edges at its boundary, or (2) many cross-edges that can be “exonerated”. A cross-edge
(i, b) ∈ E (i ∈ C, b ∈ B) is exonerated either when it is unsurprising (i.e., expected under the null
model) or when internal node i is dissimilar to boundary node b based on the focus attribute weights.
The latter criterion ensures that what makes the neighborhood members similar to one another does
not also make them similar to the boundary nodes, but rather differentiates them. The external
separability E of a neighborhood C is then

E = −
∑

i∈C,b∈B,
(i,b)∈E

(
1−min(1,

kikb
2m

)
)
s(xi,xb|w) ≤ 0 . (4.6)

External separability considers only the boundary edges and quantifies the degree that these
cross-edges can be exonerated. As discussed earlier, cross-edges are exonerated in two possible
ways. First, a cross-edge may be unsurprising; in which case the term (1−min(1, kikb

2m
)) becomes

small or ideally zero (recall Fig. 4.2 (a) scenario). Second, the boundary node of a cross-edge
may not share the same focus attributes with the internal node; in which case the term s(xi,xb|w)
becomes small or ideally zero (recall Fig. 4.2 (b) scenario). The higher the number of cross-edges
that can be exonerated, the larger E (note the negative sign) and hence the quality of a neighborhood
becomes.

Note that good neighborhoods by normality differ from quasi-cliques for which only internal
quality measures, such as density [139] or average degree [28], are defined. Different from those
and besides internal consistency, we also quantify the quality of the boundary of a neighborhood.
Normality is also different from popular measures that do quantify the boundary, such as cut-
ratio [45], modularity [106] or conductance [8], for which good neighborhoods are expected to
have only a few cross-edges. In contrast, our formulation allows for many cross-edges as long
as they are either (i) unsurprising (under the null model) or if surprising, (ii) can be exonerated
by the neighborhood focus. These advantages arise as we utilize both structure and attributes in a
systematic and intuitive way to define our measure.
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4.3.7 Normality
Having defined the two criteria for the quality of a neighborhood, normality (N ) is written as
the sum of the two quantities I and E, where high quality neighborhoods are expected to have both
high internal consistency and high external separability.

N = I + E =
∑

i∈C,j∈C

(
Aij −

kikj
2m

)
s(xi,xj|w)

−
∑

i∈C,b∈B
(i,b)∈E

(
1−min(1,

kikb
2m

)
)
s(xi,xb|w) (4.7)

For a neighborhood with the highest normality, all the possible internal edges exist and
are also surprising for which pairwise similarities are high. These ensure that the first term is
maximized. Moreover, the neighborhood either has no cross-edges or the similarity or surprise
of existing cross-edges to the boundary nodes are near zero, such that the second term vanishes.
Neighborhoods of a graph for which the normality takes negative values are of lesser quality
and deemed as anomalous.
Choice of similarity function: To this end, we considered the node attributes to be scalar variables
where s(xi,xj|w) is the weighted dot-product similarity. If the attributes are categorical (e.g.,
location, occupation, etc.), one can instead use the Kronecker delta function δ(·) that takes the value
1 if two nodes exhibit the same value for a categorical attribute and 0 otherwise.

The choice of the similarity function is especially important for binary attributes (e.g., likes-
biking, has-job, etc.). While those can be thought of as categorical variables taking the values {0, 1},
using Kronecker δ becomes undesirable for nodes inside a neighborhood. The reason is, internal
consistency by the δ function is the same both when all the neighborhood nodes exhibit a particular
binary attribute (all 1) and when none does (all 0). However, one may not want to characterize a
neighborhood based on attributes that its members do not exhibit even if the agreement is large.
Therefore, we propose to use dot-product for computing internal consistency and Kronecker δ for
computing external separability for binary-attributed graphs.

4.4 Anomaly Mining of Entity Neighborhoods
As presented so far, when given a neighborhood C of an attributed graph and vector w of attribute
weights, we can directly compute its normality using Eq. (4.7). However, for the task of anomaly
mining, the focus of a neighborhood is latent and hard to guess without any prior knowledge. This is
especially true in high dimensions where most attributes are irrelevant, making a uniform attribute
weight vector impractical. Moreover, even if the neighborhood focus is known a priori, it is hard to
assign weights to those attributes beyond that of binary relevance.

In this section, we propose an optimization approach to automatically infer the attribute weight
vector for a given neighborhood, as the vector that maximizes its normality score. That is, we aim
to identify a subspace that would make the neighborhood’s normality as high as possible. All
neighborhoods can then be ranked based on their (best possible) normality scores, and those with
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Table 4.1: Real-world graphs used in this work. ∗ depicts datasets with ground truth circles.
n: number of nodes, m: number of edges, d: number of attributes, |C|: number of circles,
|S|: average circle size.

Name n = |V| m = |E| d = |A| |C| |S| nodes edges attributes
∗Facebook 4,039 88,234 42-576 193 21.93 users friendships user profile information
∗Twitter 81,306 1,768,149 1-2,271 4,869 12.51 users follow relations hashtags and user mentions
∗Google+ 107,614 13,673,453 1-4,122 479 134.75 users friendships user profile information
DBLP 108,030 276,658 23,285 n/a n/a authors co-authorships title words used in articles
Citeseer 294,104 782,147 206,430 n/a n/a articles citations abstract words used in articles
LastFM 272,412 350,239 3,929,101 n/a n/a users friendships music pieces listened to

lowest scores can be deemed anomalous. This allows us to restate our original problem in Section
4.2 as follows:

Given a set of neighborhoods C and normality N ;
Find the attribute weight vector wCi

which maximizes N(Ci) for each neighborhood Ci ∈ C,
Rank neighborhoods C by normality score,
Find the neighborhoods of lowest quality.

4.4.1 Neighborhood Focus Extraction
Our goal is to find an attribute weight vector (hereafter called wC) for a neighborhood C, which
makes its normality as high as possible, such that connected nodes in the neighborhood are very
similar and the nodes at the boundary are dissimilar. To this end, we leverage our normality to
formulate an objective function parameterized by the attribute weights. This objective also has
the nice property of quantifying structure, by penalizing non-existing in-edges and surprising
cross-edges. Our formulation for focus extraction is then maxwC

N(C), which by reorganizing
the terms that do not depend on wC, can be rewritten (based on Eq. (4.7)) as

max
wC

wC
T ·
[ ∑
i∈C,j∈C

(
Aij −

kikj
2m

)
s(xi,xj)−

∑
i∈C,b∈B
(i,b)∈E

(
1−min(1,

kikb
2m

)
)
s(xi,xb)

]

max
wC

wC
T · (xI + xE) (4.8)

where xI and xE are vectors that respectively denote the first and the second summation terms.
Note that these can be directly computed from data. Moreover, the similarity function s(xi,xj) can
be replaced by either (xi ◦ xj) or δ(xi,xj) depending on the type of the node attributes.

4.4.2 Size-invariant Scoring
The normality score in Eq. (4.8) grows in magnitude with the size of the neighborhood C be-
ing considered. Normalization is desirable then, in order to compare across differences in both
neighborhood and boundary size.

We note that I is the maximum in the case of a fully connected neighborhood the members of
which all agree upon the focus attributes. Therefore, Imax = |C|2, where smax(xi,xj) = 1 provided
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that the attributes xi(f) are normalized to [0, 1] for each node i. On the other hand the minimum
is negative, when there exists no internal edges and pairwise similarities are maximum. That is,
Imin =

∑
i∈C,j∈C −

kikj
2m

. To normalize the internal consistency I , we subtract Imin and divide by
Imax − Imin, which is equivalent to a weighted version of edge density.

To normalize external separability, we derive a measure similar to conductance [8], i.e., ratio of
boundary or cut edges to the total volume (sum of the degrees of the neighborhood nodes). The
difference is that each edge is weighted based on its surprise and the similarity of its end nodes. In
particular, we define xĨ =

∑
i∈C,j∈C
(i,j)∈E

(
1−min(1,

kikj
2m

)
)
s(xi,xj). Note that similar to E, Ĩ considers

only the existing edges in the graph. Therefore, Ĩ − E can be seen as the total weighted volume of
the neighborhood.

Overall, we scale our measure as follows, where the division of the vectors in the second term is
element-wise. As such, x̂I(f) ∈ [0, 1] and x̂E(f) ∈ [−1, 0].

N̂ = wC
T (x̂I + x̂E) = wC

T (
xI − Imin

Imax − Imin

+
xE

xĨ − xE
)

4.4.3 Objective Optimization
The normalized objective function can be written as

max
wC

wC
T · (x̂I + x̂E) (4.9)

s.t. ‖wC‖p = 1, wC(f) ≥ 0, ∀f = 1 . . . d

Note that we introduce a set of constraints on wC to fully formulate the objective. In particular,
we require the attribute weights to be non-negative and that wC is normalized (or regularized) to its
p-norm. These constraints also facilitate the interpretation of the weights. In the following we let
x = (x̂I + x̂E), where x(f) ∈ [−1, 1].

There are various ways to choose p, yielding different interpretations. If one uses ‖wC‖p=1,
a.k.a. the L1 norm, the solution picks as the neighborhood focus the single attribute with the largest
x entry. That is, wC(f) = 1 where max(x) = x(f) and 0 otherwise. One can interpret this as the
most important attribute that characterizes the neighborhood. Note that x may contain only negative
entries, in which case the largest negative entry is selected. This implies that there exists no attribute
that can make the normality positive, and hence such a neighborhood is considered anomalous.
Note that when p = 1, N̂ ∈ [−1, 1].

If there are multiple attributes with positive x entries, we can also select all of them as the
neighborhood focus. The weights of these attributes, however, should be proportional to the
magnitude of their x values. This is exactly what ‖wC‖p=2, or the L2 norm yields. In particular, we
can show that wC(f) = x(f)√∑

x(i)>0 x(i)2
, for x(f) > 0 and 0 otherwise, where wC is unit-normalized.

Then, the normality score of the neighborhood becomes
N = wC

T · x

=
∑

x(f)>0

x(f)√∑
x(i)>0 x(i)2

x(f) =

√∑
x(i)>0

x(i)2 = ‖x+‖2

49



i.e., the L2-norm of x induced on the positive entries. As such, when there are multiple attributes
that can make the normality positive, L2 formulation produces an objective value that is higher
than that of the L1 formulation. This agrees with intuition; the larger the number of attributes
with positive x entries, the more attribute-coherence the neighborhood exhibits, and the higher
the normality gets incrementally. On the other hand, if there are no positive entries in x, the
L2 optimization selects the single attribute with the largest negative entry, and we consider the
neighborhood as anomalous. In all, N̂ ∈ [−1, ‖x+‖2] when p = 2.

While L1 and L2 are the two most commonly used norms, one can also enforce wC(f) ≤ 1
k
,

for each f , to obtain the largest k entries of x that can be interpreted as the top-k most relevant
attributes for the neighborhood (note that those may involve both positive and negative entries). In
principle, x provides a systematic and intuitive way to rank the attributes by their relevance to a
neighborhood.
Computational complexity: Notice that the solution to the optimization is quite straightforward
where the complexity mainly revolves around computing the x vector. Specifically, the complexity is
O(|C|2d+ |EB|d) for computing x and O(d) for finding the maximum entry (for L1 regularization)
or positive entries (for L2 regularization), where EB is the number of cross-edges which is upper-
bounded by |C||B|. Therefore, the complexity is quadratic w.r.t. the neighborhood size |C| � n,
and linear in the number of attributes d, while it is independent of the size of the entire graph.

4.5 Experiments

Through experiments, we (1) evaluate AMEN’s performance 1 in anomaly detection, (2) perform
case studies that analyze the type of anomalies we find, and (3) utilize normality as an exploratory
tool to study the correlation between structure and attributes across different graphs.
Datasets. A detailed description of real-world graphs used in this work is given in Table 5.2.2

Facebook, Twitter, and Google+ each consists of a collection of ground-truth social circles. For these
graphs, we consider these circles as their entity neighborhoods. For the other graphs, we consider
the egonets (subgraphs induced on each node and its neighbors) as their entity neighborhoods.
Baselines. We compare AMEN’s performance in anomaly detection against the following existing
measures and methods. Notation used in baselines: E(C) = {(i, j) ∈ E : i ∈ C, j ∈ C} (edges
induced by C); cut(C) =

∑
i∈C,b∈B,(i,b)∈E 1 (cut size induced by C); vol(C) =

∑
i∈C ki (sum of

degrees in C).

• Average degree [28], 2|E(C)|
|C| (internal consistency only, non-attributed).

• Cut ratio [45], cut(C)
|C|(n−|C|) , is the fraction of boundary edges over all possible boundary edges

(external separability only, non-attributed).
• Conductance [8], cut(C)

min(vol(C),vol(G\C))
, normalizes the cut by the total volume of C (inter-

nal+external quality, non-attributed).

1AMEN available at http://www.perozzi.net/projects/amen
2Datasets available from http://snap.stanford.edu/data/ and https://code.google.

com/p/scpm/.
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Figure 4.3: Anomaly detection results (mean precision vs. perturbation intensity) for struc-
ture only (left), attribute only (center), and structure & attribute (right) anomalies on DBLP
(top), Citeseer (middle), and LastFM (bottom). AMEN is superior, especially when attribute
perturbations are involved.

• Flake-ODF [44],

∣∣{i∈C:|{(i,j)∈E:j∈C}|<ki/2
}∣∣

|C| , is the fraction of nodes inside a neighbor-
hood that have less than half of their edges pointing inside (internal+external quality, non-
attributed).
• OddBall [2] uses a linear model to find neighborhoods that deviate in node density (internal

consistency only, non-attributed).
• SODA [58] finds a max-margin hyperplane that separates connected and disconnected nodes

using both structure and attributes. It ranks neighborhoods by the negative margin of this
hyperplane (internal+external quality, attributed).
• Attribute-Weighted Normalized Cut is based on a cluster quality measure proposed by [56]

for attributed graphs. They identify a subspace of attributes for a cluster, which minimizes
its weighted normalized cut, where edges are weighted by the similarity of end-nodes on
the selected subspace. Subspace selection is quadratic in the number of all attributes. Our
real-world datasets DBLP, Citeseer, and LastFM have more than 23 thousand, 206 thousand,
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and 3.9 million attributes, respectively, for which [56] is intractable. As such, we consider a
simplified version; by using a uniform weight vector over the full attribute space to compute
normalized cut (internal+external quality, attributed).

4.5.1 Anomaly Detection
Our evaluation of AMEN’s anomaly detection performance is two-fold. First, we perform quan-
titative evaluation; we inject anomalies into DBLP, Citeseer, and LastFM and compare detection
performance of different approaches. Second, we perform a qualitative case study of ground-truth
neighborhoods with low normality score from Facebook, Twitter, and Google+.
Quantitative Evaluation. To create ground truth anomalies, we use the egonets from DBLP,
Citeseer, and LastFM which we perturb to obtain anomalous neighborhoods. Perturbations involve
disruptions in (1) structure, (2) attributes, and (3) both. We start by choosing “good” neighborhoods;
specifically, small egonets (of size 30-100) that we expect to have low conductance cuts [54]. From
these egonets, we choose 5% of them as anomalous, i.e., to be perturbed. To perturb structure, we
rewire inside edges to random outside nodes with rewiring probability p. To perturb attributes, we
replace the attributes of inside nodes with the corresponding attributes of randomly picked outside
nodes with probability q (note that this “inheritance” only affects the egonet, and keeps the outside
nodes unchanged). For structure and attribute perturbation, we vary p or q from 0.05 to 0.50. To
perturb both, we vary them simultaneously. The larger the perturbation intensities p and q, the more
disrupted the egonet. We expect this process to create anomalous (ground truth) egonets, that are
structurally poor, for which it is hard to find shared focus attributes.

We evaluate our measure in its ability to rank the disrupted ground truth anomalies high.
Specifically, we rank the neighborhoods by their normality and report the AUC (i.e., average
precision) of the precision-recall plots for each p and/or q perturbation intensity in Figure 4.3.
We find that AMEN consistently outperforms all other measures and methods, especially at low
perturbation intensities where the task is harder—hence the gradual increase in performance by
intensity. When structure perturbation is involved (See figures on (left) and (right)), conductance
and Flake-ODF also appear to do well. When attributes are perturbed, on the other hand, AMEN is
superior, where SODA, the second best, is significantly worse than AMEN. Across perturbation
strategies and datasets, on average AMEN outperforms Flake-ODF by 16%, conductance by 18%,
AW-NCut by 20%, SODA by 23%, average degree by 24%, cut ratio by 24%, and OddBall by 25%.
Case Studies. We begin our case studies by returning to Figure 4.1, which illustrated several
examples of neighborhoods sorted by their normality (from high to low) from various graphs.
We see that the highest quality neighborhood shown (from DBLP) has good internal structure, and
attributes which allow the complete exoneration of edges at its boundary. As we progress through
neighborhoods in order of quality, we see that internal structure weakens, and boundaries become
larger. The lowest quality neighborhood shown (from Citeseer) has almost no internal structure,
and no attributes which exonerate its large boundary.

Next, we examine some of the most anomalous ground truth circles from Facebook, Twitter, and
Google+. Figure 4.4 shows that the circles with the lowest normality have both weak internal
connectivity and poor boundary separation. None of the available attributes is able to meaningfully
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Facebook Twitter Google+
L1 = L2= -0.995 L1 = L2= -0.993 L1 = L2= -0.873

Figure 4.4: Low normality ground truth neighborhoods from Facebook, Twitter, and
Google+.
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Figure 4.5: Box plots depicting L2-normality score vs. conductance for (a) DBLP and (b)
Google+.

improve their score. We find these ground-truth neighborhoods to be particularly interesting, as
they are real circles manually defined by social network users (hence ground truth) which do not,
however, exhibit characteristics of what ‘good’ communities in graphs look like.

Finally, we examine the difference between normality and conductance, a popular structural
measure, in Figure 4.5. As expected, normality gets lower for neighborhoods with increasingly
high (bad) conductance (results are for DBLP and Google+, others are similar). However, notice
the many neighborhoods in DBLP with high normality scores even if they have very high (in
range (0.9, 1.0]) conductance (several others in other graphs, and even one in Google+). These are
exactly the type of neighborhoods that are considered low quality by solely structural measures
such as conductance, but achieve high score when attributes and surprise are carefully accounted
for under the notion of “exoneration”.

For example, consider the two neighborhoods with poor conductance but high normality from
DBLP as shown in Figure 4.6. The left drawing depicts the egonet of ‘Milind S. Sawant’ (ego)—a
co-authorship circle of four researchers from electrical engineering—as well as their boundary
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Jaime Ramírez-Angulo

Milind S. Sawant

Ramón González Carvajal

Antonio J. López-Martín

Saad Bouguezel

M. N. Shanmukha Swamy

M. Omair Ahmad

L2-normality: 2.55 L2-normality: 2.63
Focus: {telescopic, multidecade, cascode} {reciprocal, split, reverse}

Figure 4.6: Example high (poor) conductance but high normality neighborhoods from
DBLP.

(other collaborators). We notice that the other nodes in the egonet, i.e. the neighbors of the ego,
have considerably larger set of collaborators. This creates numerous cross-edges, yielding poor
conductance. However, this circle is well-defined and “focused”; these four authors exclusively
work together on ‘telescopic op-amps’; notice the listed focus attributes (words). Similarly, the ego
‘Saad Bouguezel’ of the right neighborhood is much less connected than his collaborators, creating
excessive cross-edges. Those edges are exonerated by normality, due to their discriminating
focus on ‘reciprocal transforms’ and ‘split-radix FFTs’.

4.5.2 Graph Analysis with Normality
Normality also serves as a powerful tool for analyzing the correlation of structure and attributes
in a graph. In this section, we compare the distribution of neighborhood scores across all graphs.
Using normality as a lens, we see that:

• Different graphs display distinct distributional fingerprints, indicating very diverse correlation
patterns between structure and attributes.
• In all graphs, the biggest gains in normality come only from a few attributes—suggesting

that a neighborhood focus is often sparse.

First, to examine the influence of attributes upon each neighborhood, we turn to x = (x̂I + x̂E)
(Eq. (4.9)). For each neighborhood, we count the number of positive entries of x, #(x(i) > 0),
and present their distribution in Figure 4.7(a). As expected, only a small number of attributes are
relevant for most communities, so a sparse w is obtained by L2. We see that both LastFM and
DBLP have many positive attributes for each neighborhood, followed by Facebook, Citeseer, and
Twitter. The worst neighborhoods are found in Google+, where 99% of the circles do not have
any attribute that characterizes them (i.e., non-positive x). Figure 4.7(b) shows the fraction of
nodes in each neighborhood which exhibit the attribute that would be chosen by L1 maximization.
Again, DBLP and LastFM have the most agreement inside each neighborhood, followed closely by

54



100 101 102 103 104 105
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Positive Terms in x

Em
pir

ica
l C

DF
 

 

 

Facebook
Twitter
Google+
DBLP
Citeseer
LastFM

DBLP

LastFM

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of Nodes with Chosen L1 Feature

Em
pir

ica
l C

CD
F 

 

 

Facebook
Twitter
Google+
DBLP
Citeseer
LastFM

Google+

Twitter

Figure 4.7: Distribution of neighborhoods w.r.t. (a) count of positive terms in x (cdf), (b)
fraction of nodes exhibiting the L1-selected attribute (ccdf).
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(b) L2.

Facebook and Citeseer, while Twitter and Google+ neighborhoods are the most noisy in exhibiting
the highest ranked attribute.

Figure 4.8 shows the distribution of normality scores across neighborhoods for both L1 (a)
and L2 (b) maximization. We see that 89% of DBLP and 95% of LastFM neighborhoods have
positive normality, while with the exception of a few very good neighborhoods, the rest are
mostly negative. L2 optimization does not dramatically change where the bulk of the distribution is.
Majority of DBLP neighborhoods gain additional score, and 10% of LastFM neighborhoods gain a
lot of score. In others we see a small improvement, where Google+ presents neighborhoods with
lowest normality (its best circle score by L2 is ≈ 0.6).

The contribution from each positive attribute to the neighborhood score for DBLP and LastFM
is shown in Figure 4.9. We see that relevance drops fast, and essentially zeroes out after around 20
attributes. An interesting difference occurs between the two graphs, which have both many good
neighborhoods, but achieve them in different ways. In DBLP, the first few positive attributes are all
about equally good, but then they degrade quickly. On the other hand, LastFM attributes are usually
not as good, but many of them can add up to achieve a neighborhood with a high score (and hence
the long tail in Figure 4.8(b)).
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Figure 4.9: Normality of neighborhoods based on k-th most positive attribute with highest
x entry.

4.6 Related Work

We organize related work into two groups: (1) analysis of community structure and community
quality, and (2) anomaly detection in non-attributed and attributed graphs.

4.6.1 Analysis of community structure and quality

Leskovec et al. studied the statistical properties of communities in real social and information
networks and analyzed how they split into communities and how typical community qualities
(according to the conductance measure) change over a range of size scales [76]. Their findings
suggest the absence of large well-defined communities, which has been corroborated in a later study
by Gleich et al. [54]. Arnaboldi et al. analyzed the structure of ego networks and found that social
relationships in online and offline social networks are organized similarly [10]. Akoglu et al. found
that egonet characteristics display power-law-like patterns in real networks [2]. Other works studied
the structure and dynamics of real-world graphs at large, without specific focus on communities
[75, 89]. The focus of all these works is on networks with no attributes.

Several other works quantify the quality of communities in graphs. Yang and Leskovec in-
vestigated a long list of such measures and compared their performance based on ground-truth
communities [151]. Newman studied the mixing properties in attributed graphs to quantify the
correlations between the attributes of adjacent nodes; high correlation is referred as assortative
mixing, which tends to break the network into communities [105]. Similarly, Silva et al. studied
the correlation between attribute sets and dense subgraphs, called the structural correlation patterns
in attributed graphs [128]. Finally, work in subspace clustering [100] has also been extended as a
quality measure to find graph-cuts which correlate with attributes [56]. These methods have utilized
their measures to define a global objective for the graph clustering/partitioning problem, and are not
directly applicable to anomaly detection of neighborhoods.
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4.6.2 Graph anomaly detection

In their seminal work, Noble and Cook [110] used frequent subgraph mining and information
theoretic principles to identify anomalous subgraphs in graphs with a single attribute. Similarly, Ni
et al. developed algorithms to find sets of connected nodes in a graph for which a single attribute
value is significantly higher than in the neighborhood of the set [78, 79]. Akoglu et al. proposed
OddBall to find structural anomalies, where they found and used patterns in egonets to flag the
anomalies in non-attributed graphs [2]. Gao et al. formulated a new problem to identify community
outliers which deviate in the full attribute space from others that belong to the same community [51].
Perozzi et al., on the other hand, focused on community outliers that deviate on a pre-defined subset
of attributes that is inferred from user preference [114]. Both of those works find node outliers
within communities rather than anomalous communities.

Most recently, Gunnemann et al. generalized the normalized cut measure for clustering attributed
graphs [56]. Each cluster k is associated with a respective subspace sk of relevant attributes, similar
to our focus attributes. As such, a score called normalized subspace cut (NSC) can be computed
for each cluster. While NSC score can be used as a quality measure for a given neighborhood,
there are three main shortcomings to computing it: (1) The formulated objective is not convex in
subspace sk. (2) Proposed method is a heuristic, as the problem is not tractable for large graphs.
Moreover, to make the search space more tractable, the authors limit solution vectors to binary:
irrelevant/relevant, and by doing so compromise from inferring attribute weights. Finally, (3) despite
the way the search space is limited to binary weight vectors, their proposed heuristic is quadratic in
the number of all attributes |S| (and not the subspace size |sk|). This disables us to use their method
for graphs with millions, or even tens of thousands of attributes (e.g., our LastFM and DBLP graphs
in Table 5.2).

Most similar to ours is the work by Gupta et al. on outlier subgraph discovery [58]. Their
formulation involves inferring an attribute subspace in which the margin between minimum dissimi-
larity among disconnected nodes and maximum dissimilarity among connected nodes is maximized.
For normal subgraphs, this margin is expected to be large—as the minimum dissimilarity among
disconnected nodes is still large and the maximum dissimilarity among connected nodes is small.
Our quality formulation is considerably different and yields a much faster optimization. Moreover,
none of the existing works including [58] has a notion of edge “exoneration” as we introduce in our
work.

4.7 Conclusion

In this work, we considered the problem of discovering anomalous neighborhoods in attributed
graphs. We proposed normality, a new quality measure that evaluates neighborhoods both
Internally and Externally. Intuitively, a high-quality neighborhood has members with (I1) many
surprising edges connecting them that (I2) share similar values in a particular attribute subspace,
called the neighborhood focus. Moreover, it has either (E1) a few edges at the boundary, or (E2)
many cross-edges which can be exonerated as unsurprising under the null graph model and/or
dissimilar with respect to the focus attributes.
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We utilized normality within an objective formulation for anomaly mining and provided
solutions to maximize it, which automatically identify the latent focus attributes as well as their
respective weights. Our formulation yields a scalable optimization that is only quadratic w.r.t. (often
small) neighborhood size and linear in attribute size. Overall, normality is unique in its (i)
exoneration of cross-edges, and (ii) automatic inference of focus attributes under a scalable convex
optimization.

Experiments on real-world graphs demonstrate the utility of our measure in ranking neighbor-
hoods by quality, where we outperform well-established measures and methods. Normality also
provides a powerful tool for studying the correlation between structure and attributes for graphs.
Our work enables a number of future directions, including utilizing normality for community
detection at large and for user profiling, i.e., recovering missing node attributes.
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Chapter 5

Focused Clustering and Outlier Detection

5.1 Introduction

Many real-world graphs have attributes associated with the nodes, in addition to their connectivity
information. For example, social networks contain both the friendship relations as well as user
attributes such as interests and demographics. A protein-protein interaction network may not only
have the interaction relations but the gene expressions associated with the proteins. Both types of
information can be described by a graph in which nodes represent the objects, edges represent the
relations between them, and feature vectors associated with the nodes represent the attributes. Such
graph data is often referred to as an attributed graph.

For attributed graphs, we see major challenges that remain unsolved by traditional graph
mining techniques [11, 38, 68, 109, 146], which consider plain graphs (without attributes). Recent
methods have been proposed for attributed graphs, however, they either use all the given attributes
[3, 51, 82, 154] or they perform an unsupervised feature selection [57, 66, 98, 130]. In contrast to
all of these graph mining paradigms (cf. Table 5.1), we consider a user-oriented setting where the
users can control the relevance of attributes and as a consequence, the graph mining results.

In particular, we consider cluster and outlier detection based on user preference. This focused
clustering is of particular interest in attributed graphs, where users might not be concerned with all
but a few available attributes. As different attributes induce different clusterings of the graph, the
user should be able to steer the clustering accordingly. As such, the user controls the clustering by
providing a set of exemplar nodes (perceived similar by the user) from which we infer attribute
weights of relevance that capture the user-perceived similarity. The essence of user preference is
captured by those attributes with large weights. We call these the focus attributes, which form the
basis of our approach for discovering focused clusters and outliers.

To elaborate on this new terminology, we give a toy example in Figure 5.1. The graph repre-
sents the friendship relations and the node attributes denote degree, location, mother

This work originally appeared as “Bryan Perozzi, Leman Akoglu, Patricia Iglesias Sánchez, and Emmanuel
Müller. Focused clustering and outlier detection in large attributed graphs. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’14, pages 1346–1355, New York, NY,
USA, 2014. ACM.”
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Figure 5.1: Example graph with two focused clusters and one focused outlier.

Table 5.1: Comparison of related work.

Pr
op

er
ty

Graph clustering

On attrib
uted graphs

Attrib
ute subspace

User-preferred clusters

Overlapping clusters

Outlier detection

Scalability

METIS [68], Spectral [109], Co-clustering [38] X X
Autopart, Cross-associations [26] X X X

PageRank-Nibble [8], [145], BigClam [152] X X X
Spectral Relational [82], SA-Cluster [154] X X

CoPaM [98], Gamer [57] X X X X
PICS [3] X X X

CODA [51] X X X
GOutRank [101], ConSub [66] X X X X

FOCUSCO [this paper] X X X X X X X

tongue, and work. There are two focused clusters: On the left, people know each other due to
their degrees and locations. On the right, a similarity in work induces the second cluster.
As such, different user interest in subsets of the attributes may induce different clusters. In case a
user is interested in degree and location, focused clustering should only find the left cluster
and not the right one. Analogously, the example outlier is deviating with a college degree among all
others having PhDs, where degree is a focus attribute.

While our example is on a toy graph, our problem setting has several practical applications
in the real-world. For instance, a marketing manager interested in selling cosmetics could aim to
find communities in a large social network with its members being of a certain age, gender, and
income-level. S/he could then offer deals to a few members from each community, and expect the
news to propagate by the word-of-mouth. A scientist could aim to identify clusters of sky-objects
that are all in close-distance to one another (assuming a graph is constructed among sky-objects by
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distance in space) and share certain characteristics of interest (e.g., helium level, temperature, light,
etc.).

Such user-preferred clusters are likely a handful in the graph, and thus an algorithm should be
able to (i) effectively identify user preference, (ii) efficiently “chop out” relevant clusters locally
without necessarily partitioning the whole graph, and additionally (iii) spot outliers if any. In this
paper, we offer the following contributions:

• Focused Graph Mining: We propose a new user-centric problem setting that exploits the
user interest for focused mining in attributed graphs.
• Steered Search by User Preference: We infer user preference and steer the graph clustering

and outlier detection accordingly.
• Scaling to Large Graphs: Our proposed method has near-linear time complexity, and with

appropriate initialization can run in time sub-linear w.r.t. the size of the input graph.

In our evaluation we demonstrate the effectiveness and scalability of our method on synthetic
and real-world graphs, compared to existing graph clustering and outlier detection methods. Our
experiments show that existing approaches are not suitable for the new focused graph mining setting.

5.2 Related Work
We show the highlights of related work in Table 5.1. The two key differences of our work are
summarized as follows: (1) we introduce a new user-oriented problem setting for attributed graphs,
in which we aim to find focused clusters and outliers based on user preference, and (2) we propose
an algorithm that simultaneously extracts relevant clusters and outliers from large graphs. In the
following, we discuss related work in three areas; traditional plain graph mining, attributed graph
mining, and semi-supervised data mining.

Graph mining on plain graphs Graph partitioning has been well studied in the literature. Widely
used methods include METIS [68] and spectral clustering [39, 109], which aim to find a k-way
partitioning of the graph. Different from partitioning, community detection methods [44] cluster the
graph into variable size communities. Autopart, cross-associations [26], and information-theoretic
co-clustering [38] are parameter-free examples to graph clustering methods. Several methods
[8, 145, 152] also allow clusters to overlap as observed in real-world social and communication
networks. Works that aim to spot structural outliers in plain graphs include [2, 138]. However, all
of these methods are limited to plain graphs (without attributes).

Graph mining on attributed graphs Compared to the wide range of work on plain graph mining,
there has been much less work on attributed graphs. The representative methods [3, 51, 60, 82, 137,
154] aim to partition the given graph into structurally dense and attribute-wise homogeneous clusters,
detect deviations from frequent subgraphs [110], or search for community outliers in attributed
graphs [51]. These methods, however, enforce attribute homogeneity in all attributes. Recently
some methods loosen this constraint by unsupervised feature selection [130], subspace clustering
[57, 98] and subspace outlier detection [66, 101] and extract cohesive subgraphs with homogeneity
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in a subset of attributes. However, all of these methods either do not perform a selection of attributes
or do not allow for user preference to steer the algorithm.

Semi-supervised methods A broad variety of methods for semi-supervised clustering consider
user-given constraints like ‘must-link’ and ‘cannot-link’ referred to as constraint-based clustering
[13]. There also exist methods for semi-supervised outlier mining [50]. However, these methods
are based on vector data and further, not applicable to graphs with attributes.

Methods on seeded community mining [8, 32, 54, 145] find communities around (user-given)
seed nodes. However, those methods find structural communities on plain graphs and neither apply
to attributed graphs, nor enable user preference on attributes. Moreover, they do not provide outlier
detection. In contrast, we use user-given exemplar nodes to automatically infer user preference on
attributes. To the best of our knowledge this problem setting is new and we propose the first focused
graph mining approach for simultaneous clustering and outlier detection in attributed graphs.

5.3 Method FOCUSCO

In this section we first introduce the notation and pose the focused clustering and outlier detection
problem formally. Next, we discuss the main components of our approach and walk through the
details of our algorithm. Lastly, we analyze the computational complexity of FOCUSCO.

5.3.1 Problem Formulation
In this paper we introduce the novel problem of focused clustering and outlier detection in attributed
graphs, defined as follows: Given a large attributed graph G(V,E, F ) with |V | = n nodes and
|E| = m edges, where each node is associated with |F | = d attributes (features), extract from G
only the (type of) clusters pertaining to a user u’s interest (rather than partitioning the whole graph).
To do so, the user provides a small set Cex of exemplar nodes that s/he considers to be similar to the
type of nodes the clusters of his/her interest should contain. Assuming that the nodes in a cluster
“unite” or “knit up” around a few defining attributes, we then aim to infer the implicit weights βu

(i.e., relevance) of attributes that “define” the nodes in Cex, i.e., the weights of attributes that make
them as similar as possible. Thus, βu is expected to be a sparse vector with large weights for only a
few attributes (e.g., degree and location in Figure 5.1), which we call the focus attributes.

Having inferred the attribute weights βu from user u, our first goal is to extract focused clusters
C from G that are (1) structurally dense and well separated from the rest of the graph, as well as
(2) consistent on the focus attributes with large weights. The focused clusters can be overlapping,
sharing several of their nodes, as observed in real-world social and communication networks.
Moreover, the set C is a subset of all the clusters in G since different sets of clusters are expected to
unite around different attributes and we aim to extract only those that are specifically similar to the
type of clusters user u is interested in. Besides focused clustering, our second goal is to also perform
outlier detection. Outliers O are those nodes that structurally belong to a focused cluster (i.e., have
many cluster neighbors), but deviate from its members in some focus attributes. In summary, the
focused clustering and outlier detection problem in attributed graphs is given as follows:

62



Given a large graph G(V,E, F ) with node attributes, and a set of exemplar nodes Cex of user
u’s interest;

Infer attribute weights βu of relevance/importance,
Extract focused clusters C that are (1) dense in graph structure, and (2) coherent in heavy focus

attributes,
Detect focused outliers O, i.e. nodes that deviate from their cluster members in some focus

attributes.

5.3.2 Approach and Algorithm Details
Next we present the details of the three main components of FOCUSCO: (1) inferring attribute
weights, (2) extracting focused clusters, and (3) outlier detection.

Inferring Attribute Relevance

Our focused clustering setting is a user-oriented one, where each user is interested in extracting
certain kind of clusters from a given graph. The user steers the clustering by providing a small set
of exemplar nodes that are similar to one another as well as similar to the type of nodes the clusters
of his/her interest should contain. Our first goal then is to identify the relevance weights of node
attributes that make the exemplar nodes similar to each other. This kind of weighted similarity is
often captured by the (inverse) Mahalanobis distance: the distance between two nodes with feature
vectors fi and fj is (fi − fj)TA(fi − fj). Setting A as the identity matrix yields Euclidean
distance, otherwise the features/dimensions are weighted accordingly.

Given the exemplar nodes, how can we learn anA such that they end up having small distance to
each other? This is known as the distance metric learning problem [143]. We adopt the optimization
objective by [148]:

min
A

∑
(i,j)∈PS

(fi − fj)TA(fi − fj)− γ log

( ∑
(i,j)∈PD

√
(fi − fj)TA(fi − fj)

)
(5.1)

which is convex and enables efficient, local-minima-free algorithms to solve it, especially for a
diagonal solution.

We give the details of inferring attribute weights in Procedure P1. PS and PD are two sets of
similar and dissimilar pairs of nodes, respectively (P1 Line 1). In our setting, all pairs of exemplar
nodes constitute PS (P1 Line 2). We create PD by randomly drawing pairs of nodes that do not
belong to the exemplar set (P1 Lines 3-7).

We remark that in creating PD, we may also obtain samples similar to those in PS since these
draws are random. To alleviate the affect of such draws, we keep the size of PD sufficiently large.
This assumes that the number of dissimilar pairs is substantially larger than the number of similar
pairs in the original distribution. This a suitable assumption, given that the number of “focused”
clusters for any particular user-preference is likely small. Thus, we make the size of PD be |F |
times larger than that of PS (P1 Line 7). This also ensures that the data size exceeds dimension size,
and that the learning task is feasible.
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Moreover, in inferring attribute weights we learn a diagonalAmatrix (P1 Line 9). The reason for
this choice is two-fold. First, individual weights for attributes provide ease of interpretation. Second,
learning a diagonalA is computationally much more tractable (especially in high dimensions) than
learning a full one, since the latter requires solving a program with a semi-definite constraint. Of
course if desired, one can instead learn a full matrix (in low dimensions).

Procedure P3 INFERATTRIBUTEWEIGHTS

Input: exemplar set of nodes Cex
Output: attribute weights vector β

// generate similar and dissimilar node pairs
1: Similar pairs PS = ∅, Dissimilar pairs PD = ∅
2: for u ∈ Cex, v ∈ Cex do PS = PS ∪ (u, v) end for
3: repeat
4: Random sample u from set V \Cex
5: Random sample v from set V \Cex
6: PD = PD ∪ (u, v)
7: until d|PS| dissimilar pairs are generated, d = |F |
8: Oversample from PS such that PS = PD
9: Solve objective function in Equ. (5.1) for diagonalA

10: return β = diag(A)

Focused Cluster Extraction

Having determined attribute weights β, we extract the focused clusters of interest. The main idea
in “chopping out” focused clusters from G is to first identify good candidate nodes that potentially
belong to such clusters, and then to expand around those candidate nodes to find the clusters. Details
are given in Algorithm A1, which we describe below.

The process of finding good candidate sets to expand is detailed in Procedure P2. Intuitively,
nodes in focused clusters have high weighted similarity to their neighbors. Therefore, we first
re-weigh the edges E by the weighted similarity of their end nodes (P2 Lines 2-4), induce G on the
edges with notably large weights1 (P2 Line 5), and consider the nodes in the resulting connected
components as our candidate nodes (P2 Lines 6-7). We call each such component a core set.

Next, we expand around each core by carefully choosing new nodes to include in the cluster
and continue expanding until there exist no more nodes that increase the quality of the cluster.
There exist several measures of cluster quality including modularity and cut size [109]. In this
work, we use conductance [8] as it accounts for both the cut size as well as the total volume/density
retained within the cluster. The weighted conductance φ(w)(C,G) of a set of nodes C ⊂ V in graph
G(V,E, F ) is defined as

1To identify such edges, we use hypothesis testing. We first find the top few most weighted edges, and
bootstrap a Normal distribution. We then progressively subject the remaining edges to a membership-test and
consider only those that pass the test. Every time an edge passes the test, model parameters are updated.
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Algorithm A1 FOCUSCO: FOCUSED CLUSTERS&OUTLIERS

Input: attributed graph G(V,E, F ), exemplar nodes Cex
Output: focused clusters C and outliers O

1: Cores← FINDCORESETS(G(V,E, F ), Cex)
2: C = ∅, O = ∅
3: for each core i ∈ Cores do
4: C ← Seeds(i).getNodes()
5: BSN = ∅ // holds all Best Structural Nodes to add
6: φ

(w)
curr ← φ(w)(C,G)

7: repeat
8: φ

(w)
init ← φ

(w)
curr

9: (C,BSN, φ
(w)
curr)← EXPAND(G,C,BSN, φ

(w)
curr)

10: (C, φ
(w)
curr)← CONTRACT(G,C, φ

(w)
curr)

11: BSN ← BSN\C
12: until φ(w)

init = φ
(w)
curr

13: C ← C ∪ C, O ← O ∪BSN
14: end for

φ(w)(C,G) =
Wcut(C)

WV ol(C)
=

∑
(i,j)∈E,i∈C,j∈V \C

w(i, j)∑
i∈C

∑
j,(i,j)∈E

w(i, j)

where WV ol(C) is the total weighted degree of nodes in C. The lower the conductance of a cluster,
the better its quality is with few cross-cut edges and large within-density.

The expansion operation is presented in Procedure P3. First, we enlist all their non-member
neighbors as the candidate set (P3 Line 4). For each candidate node n, we compute the difference
∆φ

(w)
n in cluster conductance if n was to be added to C (P3 Lines 6-16). If there exist any node with

negative ∆ (i.e., node improves conductance), we pick the best n with the minimum (i.e., largest
absolute drop in conductance) (P3 Lines 17-23). We continue iterating until no candidate node
yields negative ∆φ(w).

The node additions are based on a best-improving search strategy. While being cautious in
which node to add (the best one at every step), our decisions are greedy. Thus, in the following step
of our algorithm we adopt a retrospective strategy and check if there exist any nodes in C whose
removal would drop conductance, presented in Procedure P4. We repeat the node addition and
removal iterations until convergence, that is, when the conductance stops changing (A1 Lines 7-12).

We remark that our algorithm is guaranteed to converge; as the (weighted) conductance of a
cluster is lower-bounded by 0 and we improve (i.e., decrease) the weighted conductance in every
iteration (P3 Line 8, P4 Line 5).2

2P4 Line 5 removes a node even if conductance remains the same, however, the number of such steps is
also bounded by cluster size.
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Procedure P2 FINDCORESETS
Input: attributed graph G(V,E, F ), exemplar nodes Cex
Output: seed sets to expand as focused clusters

1: β ← INFERATTRIBUTEWEIGHTS(Cex)
// (re)-weigh edges by feature similarity of end-nodes

2: for each (i, j) ∈ E do
3: w(i, j) = 1/(1 +

√
(fi − fj)Tdiag(β)(fi − fj))

4: end for
5: w′ ← maxw′ w

′ /∈ distributionf({w| w ≥ w′})
6: Build induced subgraph g(V ′, E ′, F ) s.t.
∀u, v ∈ V ′, (u, v) ∈ E, w(u, v) ≥ w′ iff (u, v) ∈ E ′

7: return ConnectedComponents(g(V ′, E ′, F ))

We omit the details of the ∆ conductance computation for brevity, but remark that it is an
efficient operation. Specifically, the operation of a node u to be added to or to be removed from a
cluster S has complexity proportional to the degree of u, i.e. O(d(u)). In addition, the total volume
of S is simply increased/decreased by the weighted degree w(u) of u, when it is added/removed,
which takes O(1).

Focused Outlier Detection

Our algorithm also identifies outlier nodes in each focused cluster along with finding the clusters in
a unified fashion. Our definition of a focused cluster outlier is quite intuitive: a node that belongs
to a focused cluster structurally (having many edges to its members), but that deviates from its
members in some focus attributes significantly is an outlier. To quantify this definition, the main
idea is to identify the best structural nodes BSNs (best in terms of unweighted conductance) during
the course of expansion (P3 Lines 3, 14, 22) and later check if there exist any BSNs which were
not included in the resulting focused cluster (A1 Line 11).

In order to identify the best structural node for a cluster in each iteration, we need to also track its
unweighted conductance. An advantage of our proposed approach is that the overhead of computing
the unweighted ∆φ of a node, in addition to its weighted ∆φ(w), is negligible. The reason is that, to
compute ∆φ, we simply count the total number, instead of the total weight, of those same edges that
are involved in the computation of ∆φ(w). As such, both conductances can be computed efficiently
at the same time and the best structural node and the best focused cluster node can be identified
simultaneously.

Complexity analysis

Given an attributed graph G(V,E, F ) and the exemplar nodes Cex, we first create similar and
dissimilar node pairs which we use to infer the attribute weights. As the optimization objective we
adopt is convex and as we aim for a diagonal solution, local-optima-free gradient descent techniques
will take O( d

ε2
) for an ε-approximate answer [23].
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Procedure P3 EXPAND

Input: attributed graph G(V,E, F ), focused cluster C, set BSN , current conductance φ(w)
curr

Output: a focused cluster C, its best structural nodes BSN , and its conductance φ(w)
curr

1: repeat
2: bestNode = NULL,
3: bestStructureNode = NULL
4: candidateNodes← neighbors(C)

5: ∆φ
(w)
best = 0, ∆φbest = 0

6: for each node n in candidateNodes do
7: ∆φ

(w)
n ,∆φn ← GET∆CONDUCTANCE(G,C, n,ADD)

8: if ∆φ
(w)
n < ∆φ

(w)
best then

9: ∆φ
(w)
best = ∆φ

(w)
n

10: bestNode← n
11: end if
12: if ∆φn < ∆φbest then
13: ∆φbest = ∆φn
14: bestStructureNode← n
15: end if
16: end for
17: if bestNode 6= NULL then
18: C ← C ∪ bestNode
19: φ

(w)
curr = φ

(w)
curr + ∆φ

(w)
best

20: end if
21: if bestStructureNode 6= NULL then
22: BSN ← BSN ∪ bestStructureNode
23: end if
24: until bestNode = NULL
25: return C,BSN, φ

(w)
curr

To determine good core sets to expand clusters around, we re-weigh the graph edges by the
weight vector β with complexity O(dm). Assuming β is sparse with only a few non-zero entries
for focus attributes, the multiplicative factor becomes effectively constant yielding a complexity of
O(m). Next, we identify the top-k edges with largest weights on which we induce G to find the
core sets (k � m). To do so, we use a min-heap to maintain this top set while making a single pass
over the edges. This requires O(m log k) in the worst case, assuming each edge triggers an insertion
into the heap. Using these top-k edges we estimate the parameters of a Normal distribution, which
takes O(k). Next we make another pass over the edge set and subject each to a membership test
against the Normal model in O(m). We induce the graph on all the edges that pass the test, the
connected components of which yield the core sets. Overall complexity for finding the core sets is
thus O(m log k).

For expanding a focused cluster, we enlist all the non-member neighbors as the candidate set C
and evaluate their weighted ∆ conductance. As discussed in §5.3.2, the complexity is

∑
n∈C d(n).

67



Procedure P4 CONTRACT

Input: attributed graph G(V,E, F ), focused cluster C, current conductance φ(w)
curr

Output: a focused cluster C and its conductance φ(w)
curr

1: repeat
2: removed← false
3: for each node n in C do
4: ∆φ

(w)
n ← GET∆CONDUCTANCE(G,C, n,REMOVE)

5: if ∆φ
(w)
n ≤ 0 then

6: C ← C\n
7: φ

(w)
curr = φ

(w)
curr + ∆φ

(w)
n

8: removed← true
9: end if

10: end for
11: until removed = false
12: return C, φ

(w)
curr

Since C ⊆ V , it is equivalently O(m). As we add one node at each iteration, the total complexity
becomes O(|S|m) where |S| is the size of the focused cluster, and |S| � n. Also note that focused
clusters can be extracted around each core set in parallel.

We remark that scanning candidate set C for picking the best node takes O(m) in the worst case.
Assuming small rounded focused clusters, one can expect that not all edges of G are “touched” by
C’s neighbors. This implies sub-linear performance for expanding a single cluster in practice.3

Variants of FOCUSCO

We conclude this section by briefly discussing a couple of variants of our problem setting and how
we can adapt our proposed algorithm to handle these variants.

In one variant of the problem, the user might explicitly ask for the exemplar nodes s/he provided
to be included in the focused clusters. While it is highly likely that most of the exemplar nodes
will indeed be part of the focused clusters found in Algorithm 1, inclusion of all is not guaranteed.
To handle this setting, we can include the connected components induced on the exemplar nodes
as additional core sets (in P2 Line 7) and later never allow the removal of any exemplar node in
extracting the clusters (in P4 Lines 5-9).

Another variant involves the user asking for a sparser representation of the focus attributes. In
other words, it may be practical to define the similarity among the exemplar nodes using as few
attributes as possible, especially in high dimensions. In such a case, we can tune the regularization
constant γ that we introduced in Equation (5.1) for learning the weight vector β. Specifically,
a large γ drives the second term in the objective to become large. To make the pairs in PD as

3Different ways of choosing the core sets (e.g., only using user-provided nodes) can remove the dependence
on processing the entire graph, and allow FOCUSCO to run in sublinear time.
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dissimilar as possible, a dense β is learned. The smaller the γ gets, the less the emphasis on the
dissimilar pairs becomes, and a sparser weight vector is learned.4

In other settings, the user may choose to explicitly provide the set of dissimilar nodes or the
attribute relevances (i.e., the β vector) directly, which can be incorporated trivially.

5.4 Evaluation
In this section we thoroughly evaluate our method5 on clustering quality, outlier detection perfor-
mance, and runtime on synthetic and real-world networks. None of the existing methods address the
focused clustering and outlier detection problem we pose in this paper. Nevertheless, we compare
to two representative techniques, CODA [51] and METIS [68]. CODA is a graph clustering and
outlier detection algorithm on attributed graphs, and treats all attributes equally. The clustering is
not steered by user-preference, as such, it clusters the whole graph. METIS is a graph partitioning
algorithm and does not provide outlier detection. Both methods expect the number of clusters as
input.

To evaluate focused clustering quality, we use the Normalized Mutual Information (NMI), a
widely used metric for computing clustering accuracy of a method against the desired ground truth
[85]. The ground truth in our case is the true focused clusters that are relevant to a particular user’s
interest. The best NMI score is 1. We evaluate outlier detection performance by the F1-score; the
harmonic mean of precision and recall for a known set of outliers.

5.4.1 Results on Synthetic Graphs
Data generation

To study the behavior of our algorithm compared to other approaches on graphs with ground truth
(focused) clusters and outliers, we generated synthetic graphs with various number of clusters
focusing on different subsets of the attribute space, containing various number of clusters, and with
varying size ranges. Our generative algorithm is based on the planted partitions model [35].

Simply put, given the desired number of nodes in each cluster we split the adjacency matrix into
blocks defined by the partitioning. For each block Bij , we choose a probability pij . Using a random
draw process we assign a 1, i.e. an edge, for each possible entry in the block, and 0 otherwise.
In other words, pij specifies the density of each block. The diagonal blocks constitute the actual
clusters and off-diagonal entries yield the cross edges. Unless otherwise noted, we set pii = 0.35
and 0.10 ≤ pij ≤ 0.25, i 6= j.

We assign the graph clusters generated, either to one of two focus attribute sets (i.e. focus-1 or
focus-2) or as unfocused. Please note that in real-world graphs, we expect to see more than two
focuses on a variety of attribute subspaces. For each focused cluster, one of the two subsets (focus-1
or focus-2) is chosen as focus attributes. For each attribute i in this subset the attribute values are
drawn from a Normal distribution N(µi, σ) with uniform random mean µi ∈ [0, 1] and a variance

4For γ = 0, constraint on PD is completely waived and β is zero.
5A FOCUSCO implementation is available at http://bit.ly/focusedclustering
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Figure 5.2: NMI vs. attribute size |F |. Results averaged over 100 runs, bars depict 25-75%.

σ = 0.001. The variance is specifically chosen to be small such that the clustered nodes “agree”
on their focus attributes. The rest of the attributes, on the other hand, are drawn from a Normal
distribution with much larger variance; N(0, 1). In contrast, all of the attribute values of nodes in
unfocused clusters are drawn from large-variance Normals.

Focused outliers are generated by randomly choosing members from each focused cluster and
“deflating” (depending on the setting) one or more of their focus attributes i; by replacing them by a
value drawn from N(µi, σ = 1).

Clustering quality

To study the clustering performance, we generated graphs with 3 focused clusters that are coherent
in focus-1 attributes, 3 focused clusters that are coherent in focus-2 attributes, and 3 unfocused
clusters, for a total of 9 clusters. The task is to extract the focus-1 clusters with the respective user
preference.

For comparison we use CODA and METIS, which do not perform focused cluster extraction.
They both partition the entire graph, and thus, we explicitly need to select the 3 best clusters
that these methods returned, by measuring the overlap among the clusters they produced to the
ground-truth clusters. Since both methods require the number of clusters to be provided as input, we
asked for the correct number of (9) clusters, i.e. best performance, although in practice this number
is hard to choose as the number of hidden clusters is unknown, especially for large graphs.

METIS is a graph partitioning algorithm that does not handle attributes. In one version of METIS,
we ignore the attributes and use only the graph structure. In a second version, we incorporate attribute
information by weighing the edges of the graph (using β) by the attribute similarity of their end
nodes. We call these two versions as weighted METIS (w) and unweighted METIS (uw). While
CODA can perform clustering for attributed graphs, a main challenge with it is to carefully choose
a λ parameter that controls the trade-off between structural and attribute similarity of the nodes. In
our experiments we report results using 3 different λ settings, 0.05, 0.1, and 0.5, for CODA.

Figure 5.2 shows the clustering performance (mean NMI over 100 independent runs) of the
methods when we increase the number of attributes while retaining the same number of (5) focus
attributes for the focused clusters. We observe that FOCUSCO remains superior to all the other
approaches in the face of irrelevant attributes for the clustering task.
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Figure 5.3: NMI clustering quality results on synthetic graphs, for FOCUSCO, CODA with
three different λ parameter settings, and METIS on un/weighted graphs; (a) for changing
cluster sizes (all clusters have the same size), (b) for changing cluster size variance (graph has
variable size clusters), and (c) for increasing number of unfocused clusters. FOCUSCO per-
forms the best in all scenarios across a wide range of settings. Symbols depict the mean over
100 runs, bars depict 25-75%.

To illustrate the importance of weight learning, we also study the performance of a variant of our
FOCUSCO, in which we use a uniform attribute weight vector β, i.e., we bypass weight learning
and directly perform cluster extraction. We observe that the performance of this version of our
algorithm drops quickly with increasing attribute size. Our analysis suggests that this occurs due to
the edge weights having a more and more uniform distribution when weighted by using a uniform
β, which yields an inferior collection of core sets around which we find clusters. Thus, we proceed
with studying the performance of our original FOCUSCO.

Next in Figure 5.3 we show the clustering performance of the methods under various other
settings. In (a), we increase the cluster size where we create clusters of the same size in the graph.
In (b), we allow the graph to contain variable size clusters and increase the variance of the cluster
sizes, by randomly drawing them from increasing ranges. Finally in (c), we increase the number
of unfocused clusters in the graph, while keeping the number of focused clusters fixed.6 Notice
that recovering a few focused clusters of interest in the existence of more unfocused clusters is an
increasingly challenging problem.

From all these setups, we observe that FOCUSCO outperforms the competing methods and their
variants in all scenarios. Weighted METIS seems to achieve slightly better performance than the
unweighted version, although the differences are not significant. CODA’s accuracy is the lowest, as
the homophily assumption it is making does not hold in the full attribute space. We note that in (c),
one parameterization of CODA (λ = 0.5) achieves as high accuracy as METIS for small number of
clusters. Its accuracy, however, quickly drops when many more unfocused clusters than focused
ones are introduced. Other two parameterizations give low accuracy, pointing out the sensitivity of
CODA to the choice of its parameter.

Finally, we study the clustering performance when focus-1 and focus-2 clusters share common
focus attributes. We create 20 node attributes out of which the first 10 are assigned as focus-1

6To ensure sparsity of the growing graphs, we set pij = 0.02.
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Figure 5.4: Clustering performance by increasing overlap on focus attributes of different
focused clusters. (mean NMI over 100 runs, bars: 25-75%).

attributes and the next 10 are assigned as focus-2 attributes to the respective clusters. Then, we
gradually overlap the focus attributes until they are the same set of 10 for all the focused clusters.
Figure 5.4 shows that the performance of FOCUSCO remains stable and high across all overlaps.
The accuracy of METIS (w) is also quite stable and stays around 0.6 (METIS (uw) is not expected
to be affected in this setup). We also notice that CODA’s performance starts increasing after more
than 50% of the focus attributes overlap. At 100%, there is essentially only a single focus in the
graph, where CODA’s performance peaks. This suggests that CODA is more suitable for attributed
graphs with uniform graph clusters and would suffer when the graph contains many heterogeneous
focused clusters (with multiple focuses) as we would expect to see in real networks.

These results show the robustness of FOCUSCO, where its performance remains quite stable
across different settings. They also illustrate that the general graph clustering methods are not
suitable for our focused clustering problem, as their performance is (i) sensitive to the (parameter)
setting, and (ii) lower than that of FOCUSCO at all settings.

Outlier detection

Next we evaluate outlier detection performance. Since METIS does not detect outliers, we compare
to CODA. In addition to its λ parameter, CODA expects a parameter r that controls the top
percentage of nodes to be returned as outliers. We report experiments for the cross-product of
λ = {0.05, 0.1, 0.5} and r = {1%, 5%}.

In the first setup, we study the performance with respect to the severity of outliers. If an outlier
deviates in a larger number of focus attributes from its cluster members, it becomes more severe
in outlierness, but easier to detect. To create outlier nodes with higher outlierness, we gradually
increase their number of focus attributes that we deflate. Figure 5.5 shows the F1-score and precision
(averaged over 100 runs). We observe that FOCUSCO achieves superior performance to CODA in
both metrics. We can also notice the increase in detection accuracy of FOCUSCO with increasing
number of deflated focus attributes (i.e., increasing ease in spotting outliers), as we expected, while
the same trend is not apparent for CODA potentially because it does not calibrate to attribute
subspaces.

We further analyze the outlier detection accuracy with respect to the attribute space size. In
Figure 5.6 we observe that CODA’s performance starts dropping after a certain number of attributes,
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Figure 5.5: Outlier detection performance by increasing number of deflated focus attributes.
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Figure 5.6: Outlier detection performance by increasing number of attributes |F |.

where identifying descriptive focus attributes becomes more and more crucial to accurately spot the
outliers that are hidden in different community structures. The performance of FOCUSCO on the
other hand remains quite stable and superior to CODA.

Finally, we note that the precision of FOCUSCO is often higher than its recall, while both being
superior to CODA’s.

Scalability

Finally we study the scalability of the methods. Figure 5.7 shows the running times with increasing
number of edges and attributes. CODA’s inference techniques are computationally demanding,
and thus, its running time is much higher than other methods. METIS on the other hand uses
an extremely efficient heuristic and achieves low running times. We report the average cluster
extraction time for FOCUSCO in addition to total running time, as each cluster extraction can be
performed in parallel. In fact, we notice that while its total running time increases by graph size,
average time to extract a single cluster remains stable and low. In such a case, FOCUSCO is also
comparable to METIS.
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Figure 5.8: Two sets of focused clusters in DISNEY. Left clusters focus on attributes related to
popularity (sales rank, number of reviews, etc.) Nodes in right clusters share similar ratings.
Outliers are marked with red and illustrated. See text for discussion. (best viewed in color)

5.4.2 Results on Real-world Graphs

Dataset description

We use several attributed networks obtained from real-world data to evaluate our approach. DIS-
NEY is an Amazon co-purchase graph of Disney movies.7 Each movie has 28 attributes such as
price, rating, number of reviews, etc. POLBLOGS is the citation network among a collection of
online blogs that discuss political issues. Attributes are the keywords in their text. DBLP and
4AREA are two different co-authorship networks of computer science authors. The attributes reflect
the conferences which an author has published in broadly (DBLP), or just in databases, data mining,
information retrieval, and machine learning (4AREA). Finally, we have the friendship relations of
YOUTUBE users and the attributes depict their group memberships. Dataset statistics are given in
Table 5.2.

7http://www.ipd.kit.edu/˜muellere/consub/
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Dataset |V | |E| |F | Running time (sec)
DISNEY 124 333 28 0.0017 ± 0.0022 (8.3)
POLBLOGS 362 1288 44839 0.0040 ± 0.0052 (2.8)
4AREA 27199 66832 4 0.0052 ± 0.0018 (3390.9)
DBLP 30599 146647 18 0.2868 ± 0.0630 (761.4)
YOUTUBE 77381 367151 30087 2.9643 ± 0.7201 (257.4)

Table 5.2: Real-world datasets used in this work. Average running time in seconds per cluster
± std (avg. number of clusters extracted).

Running time

Our real datasets come from various domains and have different node, edge, and attribute counts.
Here we report running time experiments to demonstrate the efficiency of our method on these real
graphs.

We setup 10 runs of our method on each graph, each with a randomly sampled 1% of the
attributes as the focus attributes. Each run returns a different number of clusters, thus we report
the running time per cluster averaged over the 10 runs and their standard deviations in Table 5.2.
Notice that similar to Figure 5.7, the running times are quite low. In particular, the average time to
extract a cluster in our largest graph YOUTUBE takes around 3 seconds.

Case Studies

The first case study we consider is finding two types of focused clusters in DISNEY. In one
instance, a user wants to understand how the popularity of a movie influences its community in
a co-purchase network. The user decides that the product’s popularity is related to the features
Number of reviews and Sales rank, and so chooses a few products which have similar
values in those attributes. FOCUSCO then uses this exemplar set Cex to learn an attribute weighting
βu. This βu reflects the user’s intent, and has also captured another dimension correlated with those
attributes; Number of different authors.

Several extracted focused clusters for this task are shown on the left in Figure 5.8. In general,
the discovered clusters consist of movies of similar age and acclaim. The first focused cluster (blue)
reflects traditional Disney classics such as Robinhood. Its outlier is a sequel (An Extremely
Goofy Movie) that is much less popular than the other classics in the cluster. The second
community (green) focuses on popular older Disney movies, and has outliers such as American
Legends and again the Goofy sequel, that are much less popular. The third cluster (orange)
overlaps with the first focused cluster. It is a subset of the classic Disney movies of the larger
cluster that were predominantly starred by animals (e.g., The Rescuers). Its cluster outlier is
The Black Caldron, which although of similar vintage, starred a human protagonist and was
much less popular.

In the next instance, a user wants to examine how the differences in the distribution of consumer
ratings affect the DISNEY clustering. In this case, the focused clusters represent collections of
movies that are similarly rated (e.g., Pixar films or animated Disney classics). The outliers represent
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Figure 5.9: A focused cluster of liberal blogs in POLBLOGS with a focus on Iraq war debate.
Outlier David Sirota does not mention Waas in his posts.

movies which are rated differently from the movies they are purchased with, and reflect consumer
opinion. The results are shown in the right of Figure 5.8. The first focused cluster (purple)
represents traditional Disney classics. Its outlier (which was included in the previous focused
popularity cluster) is the movie A Goofy Movie which although reasonably popular, is not as
high rated. The second cluster (green) is the Pixar community, featuring high-rated movies like Toy
Story. Its focused outlier is the live action version of 101 Dalmatians, a movie which is rated
quite differently than most Pixar films. The third cluster consists of renowned Disney films such as
Fantasia. It also contains an outlier, the Spanish version of Beauty and the Beast.

We consider a second case study on POLBLOGS, where a user seeks to understand the difference
between blog content written by different liberal bloggers during the height of the Iraq war contro-
versy in 2005. Using several liberal blogs as an example set, the user learns a βu which represents
the focus of the bloggers (as shown in the top of Figure 5.9, text size of features proportional to
weight). It contains words such as eriposte, an active liberal blogger, peacenik, a term for an
anti-war activist, and most strongly Waas. Murray Waas was an independent journalist praised for
his investigative journalism of the Bush administration.8 The focused community outlier for this
group is David Sirota, a well-connected liberal blogger who did not explicitly mention Waas in the
dataset.

The third case study we consider is on the 4AREA dataset. Here a user wants to
understand who the outliers are in the data mining co-authorship network. S/he learns

8http://www.huffingtonpost.com/jay-rosen/murray-waas-is-the-woodwa_b_
18875.html
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a βu using {Christos Faloutsos, Jiawei Han, Jon M. Kleinberg, Jure
Leskovec, Andrew Tomkins} as input, who focus primarily on data mining. One of the
focused clusters found is around data mining researchers mostly in industry, as shown in Figure
5.10. The outlier is Cameron Marlow, the former head of Facebook’s data science team, who
collaborated with the researchers in the data mining community but published on information
retrieval.

5.5 Conclusion
In this work we introduce a new problem of finding focused clusters and outliers in large attributed
graphs.

Given a set of exemplar nodes that capture the user interest, our goal is two-fold: 1) “chop
out” clusters of similar nodes that are densely connected and exhibit coherence in a subset of their
attributes, called the focus attributes, and 2) identify focused outliers, i.e. nodes that belong to a
focused cluster in network structure but show deviance in some focus attribute(s). We propose
an efficient algorithm that infers the focus attributes of interest to the user, and that both extracts
focused clusters and spots outliers simultaneously. Experiments on synthetic and real-world graphs
show the effectiveness and scalability of our approach and that the existing graph clustering and
outlier detection techniques are not suitable to handle the newly posed problem.
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Chapter 6

Inducing Language Networks from
Continuous Space Word Representations

6.1 Introduction

Unsupervised feature learning (deep learning) utilizes huge amounts of raw data to learn represen-
tations that model knowledge structure and disentangle the explanatory factors behind observed
events. Under this framework, symbolic sparse data is represented by lower-dimensional continuous
spaces. Integrating knowledge in this format is the secret behind many recent breakthroughs in
machine learning based applications such as speech recognition, computer vision, and natural
language processing (NLP).

We focus here on word representations (word embeddings) where each word representation
consists of a dense, real-valued vector. During the pre-training stage, the representations acquire
the desirable property that similar words have lower distance to each other than to unrelated
words [64]. This allows the representations to utilize the abundance of raw text available to learn
features and knowledge that is essential for supervised learning applications such as part-of-speech
tagging, named entity recognition, machine translation, language modeling, sentiment analysis etc
[34, 55, 91, 124].

Several methods and algorithms have been proposed to learn word representations along different
benchmarks for evaluation [29]. However, these evaluations are hard to comprehend as they squash
the analysis of the representation’s quality into abstract numbers. To enable better understanding of
the actual structure of word relationships which have been captured, we have to address the problems
that come with analyzing high-dimensional spaces (typically between 50-1000 dimensions). We
believe that network induction and graph analysis are appropriate tools to give us new insights.

In this work, we seek to induce meaningful graphs from these continuous space language models.
Specifically, our contributions include:

This work originally appeared as “Bryan Perozzi, Rami Al-Rfou, Vivek Kulkarni, and Steven Skiena. Inducing
language networks from continuous space word representations. In Complex Networks V, volume 549 of Studies in
Computational Intelligence, pages 261–273. 2014.”
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• Analysis of Language Network Induction - We propose two criteria to induce networks
out of continuous embeddings. For both methods, we study and analyze the characteristics
of the induced networks. Moreover, the networks generated lead to easy to understand
visualizations.

• Comparison Between Word Representation Methods - We evaluate the quality of two
well known words embeddings. We contrast between their characteristics using the analysis
developed earlier.

The remainder of this paper is set up as follows. First, in Section 6.2, we describe continuous
space language models that we consider. In Section 6.3, we discuss the choices involved with
inducing a network from these embeddings and examine the resulting networks. Finally, we finish
with a discussion of future work and our conclusions.

6.2 Continuous Space Language Models

The goal of a language model is to assign a probability for any given sequence of words estimating
the likelihood of observing such a sequence. The training objective usually maximizes the joint
probability of the training corpus. A continuous space probabilistic language model aims to estimate
such probability distribution by, first, learning continuous representations for the words and phrases
observed in the language. Such mapping is useful to cope with the curse of dimensionality in cases
where data distribution is sparse as natural language. Moreover, these representations could be used
as features for natural language processing applications, domain adaptation and learning transfer
scenarios that involve text or speech.

More precisely, given a sequence of words S = [w1 . . . wk], we want to maximize P (w1, . . . , wk)
and learn representations for words. During the training process the continuous space language
model learns a mapping of words to points in Rd, where d usually ranges between 20− 200. Prior
to training we build a vocabulary V that consists of the most frequent |V | words, we map each
word to a unique identifier that indexes an embeddings matrix C that has a size of |V | × d. The
sequence S is now represented by a matrix

[
C[w1]T . . . C[wk]

T
]T , enabling us to compose a

new representation of the sequence using one of several compositional functions. The simplest is
to concatenate all the rows in a bigger vector with size kd. Another option is to sum the matrix
row-wise to produce a smaller representation of size d. While the first respects the order of the
words, it is more expensive to compute.

Given a specific sequence representation as an input, we will define a task that the model
should solve, given the sequence representation as the only input. Our choice of the task ranges
from predicting the next/previous word(s) to distinguishing between observed phrases and other
corrupted copies of them. The chosen task and/or the compositional function influence the learned
representations greatly as we will discuss later.

We will focus our investigations, here, on two embeddings which are trained with different tasks
and compositional functions; the Polyglot and SkipGram embeddings.
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6.2.1 Polyglot
The Polyglot project offers word representations for each language in Wikipedia [5]. For large
enough Wikipedias, the vocabulary consists of the most frequent 100,000 words. The representations
are learned through a procedure similar to the one proposed by [34]. For a given sequence of words
St = [wt−k . . . wt . . . wt+k] observed in the corpus T , a corrupted sequence S ′t will be constructed by
replacing the word in the middle wt with a word wj chosen randomly from the vocabulary V . Once
the vectors are retrieved, we compose the sequence representation by concatenating the vectors into
one vector called the projection layer St. The model is penalized through the hinge loss function,

1

T

t=T∑
t=1

|1− score(S ′t) + score(St)|+

where score is calculated through a hidden layer neural network

score(St) = W2(tanh(W1St + b1)) + b2.

For this work, we use the Polyglot English embeddings1 which consist of the 100,000 most
frequent words in the English Wikipedia, each represented by a vector in R64.

6.2.2 SkipGram
While the Polyglot embeddings consider the order of words to build the representation of any
sequence of words, the SkipGram model proposed by [92] maximizes the average log probability of
the context words independent of their order

1

T

T∑
t=1

[ k∑
j=−k

log p(wt+j|wt)
]

where k is the size of the training window. This allows the model to scale to larger context windows.
In our case, we train a SkipGram model2 on the English Wikipedia corpus offered by the Polyglot
project for the most frequent 350,000 words with context size k set to 5 and the embeddings vector
size set to 64.

6.2.3 Random
In order to have a baseline, we also generate random embeddings for the most frequent 100,000
words. The initial position of words in the Polyglot embeddings were sampled from a uniform
distribution, therefore, we generate the random embedding vectors by sampling from U(m̄− σ, m̄+
σ), where m̄ and σ are the mean and standard deviation of the trained Polyglot embeddings’ values
respectively. This baseline allows us to see how the language networks we construct differ from
networks induced from randomly initialized points.

1Polyglot embeddings and corpus available at http://bit.ly/embeddings
2SkipGram training tool available at https://code.google.com/p/word2vec/
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6.3 Word Embedding Networks
We now consider the problem of constructing a meaningful network given a continuous space
language model. As there are a variety of ways in which such a network could be induced, we start
by developing a list of desirable properties for a language network. Specifically, we are seeking to
build a network which:

1. Is Connected - In a connected graph, all the words can be related to each other. This allows
for a consistent approach when trying to use the network to solve real-world problems.

2. Has Low Noise - Minimizing the spurious correlations captured by our discrete representation
will make it more useful for application tasks.

3. Has Understandable Clusters - We desire that the community structure in the network
reflects the syntactic and semantic information encoded in the word embeddings.

We also require a method to compute the distance in the embedding space. While there are a
variety of metrics that could be used, we found that Euclidean distance worked well. So we use:

dist(x, y) = ||x− y||22 = (
m∑
i=1

(xi − yi)2)(1/2) (6.1)

where x and y are words in an d-dimensional embedding space (x, y ∈ Rd). With these
criteria and a distance function in hand, we are ready to proceed. We examine two approaches for
constructing graphs from word embeddings, both of which seek to link words together which are
close in the embedding space. For each method, we induce networks for the 20, 000 most frequent
words for each embedding type, and compare their properties.

6.3.1 k-Nearest Neighbors
The first approach we will consider is to link each word to the k closest points in the embedding
space. More formally, we induce a set of directed edges through this method:

Eknn = {(u, v) : min
x
dist(u, v)} ∀u, v ∈ V, x ≤ k (6.2)

where minx denotes the rank of the x-th number in ascending sorted order (e.g. min0 is the
minimum element, min1 the next smallest number). After obtaining a directed graph in this fashion,
we convert it to an undirected one.

The resulting undirected graph does not have a constant degree distribution. This is due to the
fact that the nearest-neighbor relation may not be symmetric. Although all vertices in the original
directed graph have an out-degree of k, their orientation in the embedding space means that some
vertices will have higher in-degrees than others.

Results from our investigation of basic network properties of the k-NN embedding graphs are
shown in Figures 6.1 and 6.2. In (6.1a) we find that the embedding graphs have few disconnected
components, even for small values of k. In addition, there is an obvious GCC which quickly
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Figure 6.1: Graph Coverage. The connected components and relative size of the Giant Con-
nected Component (GCC) in graphs created by both methods. We see that very low values
of k quickly connect the entire network (6.1a), while values of d appear to have a transition
point before a GCC emerges (6.1b).

emerges. In this way, the embeddings are similar to the network induced on random points (which
is fully connected at k = 2). We performed an investigation of the smaller connected components
when k was small, and found them to contain dense groupings of words with very similar usage
characteristics (including ordinal values, such as Roman numerals (II,III,IV)).

In (6.2a) we see that the clustering coefficient initially grows quickly as we add edges to our
network (k ≤ 6), but has leveled off by (k = 20). This tendency to bridge new clusters together,
rather than just expand existing ones, may be related to the instability of the nearest neighbor [18]
in high dimensional spaces. In (6.2b), we see that the networks induced by the k-NN are not only
connected, but have a highly modular community structure.

6.3.2 d-Proximity

The second approach we will consider is to link each word to all those within a fixed distance d of
it:

Eproximity = {(u, v) : dist(u, v) < d} ∀u, v ∈ V (6.3)

We perform a similar investigation of the network properties of embedding graphs constructed
with the d-Proximity method. The results are shown in Figures 6.1 and 6.2. We find that networks
induced through this method quickly connect words that are near each other in the embedding space,
but do not bridge distant groups together. They have a large number of connected components, and
connecting 90% of the vertices requires using a relatively large value of d (6.1b).

The number of connected components is closely related to the average distance between points
in the embedding space (around d =(3.25, 3.80, 2.28) for (SkipGram, Polyglot, Random)). As the
value of d grows closer to this average distance, the graph quickly approaches the complete graph.

Figure 6.2a shows that as we add more edges to the network, we add triangles at a fast rate than
using the k-NN method.
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Figure 6.2: Community Metrics. In (6.2a), C shown for k = [2,30] and d = [0.8,1.6]
against number of edges in the induced graph. When the total number of edges is low
(|E| < 150, 000), networks induced through the k-NN method have more closed triangles
than those created through d-Proximity. In (6.2b), Qknn starts high, but slowly drops as
larger values of k include more spurious edges.

6.3.3 Discussion

Here we discuss the differences exposed between the methods for inducing word embeddings, and
the differences exposed between the embeddings themselves.

Comparison of Network Induction Methods.

Which method then, provides the better networks from word embeddings? To answer this question,
we will use the properties raised at the beginning of this section:

1. Connectedness - Networks induced through the k-NN method connect much faster (as a
function of edges) than those induced through d-Proximity (Fig. 6.1). Specifically, the
network induced for k = 6 has nearly full coverage (6.1a) with only 100K edges (6.2a).

2. Spurious Edges - We desire that our resulting networks should be modular. As such we
would prefer to add edges between members of a community, instead of bridging communities
together. For low values of |E|, the k-NN approach creates networks which have more closed
triangles (6.2a). However this does not hold in networks with more edges.

3. Understandable Clusters - In order to qualitatively examine the quality of such a language
network, we induced a subgraph with the k-NN of the most frequent 5,000 words in the
Polyglot embeddings for English. Figure 6.3 presents the language network constructed for
(k = 6).

According to our three criteria, k-NN seems better than d-Proximity. In addition to the reasons
we already listed, we prefer k-NN as it seems to require less parameterization (d-Proximity has a
different optimal d for each embedding type).
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Comparison of Polyglot and SkipGram.

Having chosen to use k-NN as our preferred method for inducing language networks, we now
examine the difference between the Polyglot and SkipGram networks.

Clustering Coefficient. We note that in Figure 6.2a, the SkipGram model has a consistently
higher clustering coefficient than Polyglot in k-NN networks. A larger clustering coefficient denotes
more triangles, and this may indicate that points in the SkipGram space form more cohesive
local clusters than those in Polyglot. Tighter local clustering may explain some of the interesting
regularities observed in the SkipGram embedding [94].

Modularity. In Figure 6.2b, we see that Polyglot modularity is consistently above the SkipGram
modularity. SkipGram’s embeddings capture more semantic information about the relations between
words, and it may be that causes a less optimal community structure than Polygot whose embeddings
are syntactically clustered.

Clustering Visulizations. In order to understand the differences between the language networks
better, we conducted an examination of the clusters found using the Louvain method [21] for
modularity maximization. Figure 6.4 examines communities from both Polyglot and SkipGram in
detail.

6.4 Related Work
Here we discuss the relevant work in language networks, and word embeddings. There is also
related work on the theoretical properties of nearest neighbor graphs, consult [41] for some basic
investigations.

6.4.1 Language Networks

Word Co-occurrences. One branch of the study of language as networks seeks to build networks
directly from a corpus of raw text. [24] examine word co-occurrence graphs as a method to analyze
language. In their graph, edges connect words which appear below a fixed threshold (d ≤ 2) from
each other in sentences. They find that networks constructed in this manner show both small world
structure, and a power law degree distribution. Language networks based on word co-occurrence
have been used in a variety of natural language processing tasks, including motif analysis of
semantics [19], text summarization [9] and resolving disambiguation of word usages [141].

Hypernym relations. Another approach to studying language networks relies on studying the
relationships between words exposed by a written language reference. [99] use a thesaurus to
construct a network of synonyms, which they find to find to exhibit small world structure. In [127],
[127] investigate the graph structure of the Wordnet lexicon. They find that the semantic edges
in Wordnet follow scale invariant behavior and that the inclusion of polysemous edges drastically
raises the clustering coefficient, creating a small world effect in the network.

Relation to our work. Much of the previous work in language networks build networks that are
prone to noise from spurious correlations in word co-occurrence or infrequent word senses [24, 127].
Dimensionality reduction techniques have been successful in mitigating the effects of noise in
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Figure 6.3: Polyglot Nearest Neighbor Graph. Here we connect the nearest neighbors (k = 6)
of the top 5,000 most frequent words from the Polyglot English embeddings. Shown is the
giant connected component of the resulting graph (|V | = 11, 239; |E| = 26, 166). Colors
represent clusters found through the Louvain method (modularity Q = 0.849). Vertex label
size is determined by its PageRank. Best viewed in color.

a variety of domains. The word embedding methods we examine are a form of dimensionality
reduction that has improved performance on several NLP tasks and benchmarks.
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(a) Professions (SkipGram) (b) Professions (Polyglot)

(c) Locations (SkipGram) (d) Locations (Polyglot)

Figure 6.4: Comparison of clusters found in Polyglot and SkipGram language networks.
Polyglot clusters viewed in context of the surrounding graph, SkipGram clusters have been
isolated to aide in visualization. SkipGram’s bag-of-words approach favors a more semantic
meaning between words, which can make its clusters less understandable (Note how in Figure
6.4c Petersburg is included in a cluster of religious words, because of Saint.) Images
created with Gephi [12].
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The networks produced in our work are considerably different from language networks created
by previous work that we are aware of. We find that our degree distribution does appear to follow a
power-law (like [24, 99, 127]) and we have some small world properties like those present in those
works (such as C � Crandom). However, the average path length in our graphs is considerably
larger than the average path length in random graphs with the same node and edge cardinalities.
Table 6.1 shows a comparison of metrics from different approaches to creating language networks.3

|V | |E| C Crandom pl plrandom γ
[24](UWN) 478, 773 1.77× 107 0.687 1.55× 10−4 2.63∗ 3.03 -1.50,-2.70
[24](RWN) 460, 902 1.61× 107 0.437 1.55× 10−4 2.67∗ 3.06 -1.50,-2.70
[99] 30, 244 − 0.53 0.002 3.16 − −
Polyglot, 6-NN 20, 000 96, 592 0.241 0.0004 6.78∗ 4.62∗ -1.31
SkipGram, 6-NN 20, 000 94, 172 0.275 0.0004 6.57∗ 4.62∗ -1.32

Table 6.1: A comparison of properties of language networks from the literature against those
induced on the 20,000 most frequent words in the Polyglot and SkipGram Embeddings. (C
clustering coefficient, pl average path length, γ exponent of power law fits to the degree
distribution) ‘*’ denotes values which have been estimated on a random subset of the vertices.

6.4.2 Word Embeddings

Distributed representations were first proposed by [63], to learn a mapping of symbolic data to
continuous space. These representations are able to capture fine grain structures and regularities
in the data [94]. However, training these models is slow due to their complexity. Usually, these
models are trained using back-propagation algorithm [123] which requires large amount of compu-
tational resources. With the recent advancement in hardware performance, [16] used the distributed
representations to produce a state-of-the-art probabilistic language model. The model maps each
word in a predefined vocabulary V to a point in Rd space (word embeddings). The model was
trained on a cluster of machines for days. More applications followed, [34] developed SENNA, a
system that offers part of speech tagger, chunker, named entity recognizer, semantic role labeler and
discriminative syntactic parser using the distributed word representations. To speed up the training
procedure, importance sampling [14] and hierarchical softmax models [95, 97] were proposed to
reduce the computational costs. The training of word representations involves minimal amount of
language specific knowledge and expertise. [5] trained word embeddings for more than a hundred
languages and showed that the representations help building multilingual applications with minimal
human effort. Recently, SkipGram and Continuous bag of words models were proposed by [92] as
simpler and faster alternatives to neural network based models.

3Our induced networks available at http://bit.ly/inducing_language_networks
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(a) Pronouns & Adverbs (b) Plurals

Figure 6.5: Additional close-ups of clusters in Polyglot embeddings (from Figure 6.3)
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Figure 6.6: Visualization of the 6-NN for the GCC of the top 5,000 most frequent words in
the SkipGram embeddings. SkipGram’s representations are more semantic, and so language
features like polysemous words make global visualization harder.
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6.5 Conclusions
We have investigated the properties of recently proposed distributed word representations, which
have shown results in several machine learning applications. Despite their usefulness, understanding
the mechanisms which afford them their characteristics is still a hard problem.

In this work, we presented an approach for viewing word embeddings as a language network.
We examined the characteristics of the induced networks, and their community structure. Using this
analysis, we were able to develop a procedure which develops a connected graph with meaningful
clusters. We believe that this work will set the stage for advances in both NLP techniques which
utilize distributed word representations, and in understanding the properties of the machine learning
processes which generate them.

Much remains to be done. In the future we would like to focus on comparing word embeddings
to other well known distributional representation techniques (e.g. LDA/LSA), examining the effects
of different vocabulary types (e.g. topic words, entities) on the induced graphs, and the stability of
the graph properties as a function of network size.
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Chapter 7

Conclusions

This thesis is concerned with the scalable modeling of attributed graphs. Its main contributions
include:

• DEEPWALK, the first extension of deep learning paradigms into social network analysis
(Chapter 2).

• WALKLETS, a technique for building explicit multiscale representations (Chapter 3).

• Normality, a community quality measure which can be efficiently optimized, even in the
presence of high-dimensional attribute spaces (Chapter 4).

• Focused Clustering, query driven local clustering and outlier detection in attributed graphs
(Chapter 5).

• An analysis of the underlying structure of popular word embedding techniques (Chapter 6).

7.1 Future Work

My original work on DEEPWALK illustrated how the machinery developed originally for neural
language modeling can be applied to a very general class of graph analysis problems in data mining
and information retrieval. Unsurprisingly, these new domains have raised a number of interesting
new research questions. Here, I briefly describe a number of areas for additional investigation.

7.1.1 Extensions to New Graph Classes

As originally proposed, DEEPWALK only considers the induction of latent representations from
unweighted, undirected, connected graphs. Since its release, there has been interest expressed from
a number of researchers in applying it to a variety of other graphs which naturally occur in the
course of data analysis. Briefly we summarize these extensions:
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• Weighted Graphs - It is common for an edge Eij to have a scalar weight wij associated
with it. The natural extension is to modify DeepWalk’s random walks to make non-uniform
decisions about which neighbor to visit next (e.g. sample edges with respect to their weight).
Interestingly, in our initial experiments we have observed that this does not necessarily lead
to better representation performance on prediction tasks.

We propose to study this behavior more fully. Specifically, we will quantify the sufficient
and necessary structural conditions for various random walk strategies to work, and use these
results to extend DeepWalk to work with a variety of weighed graphs.

• Disconnected Graphs - Real world graphs are frequently disconnected, which can pose a
problem for graph embedding methods. Potential problems include: (1) This disconnection
represents a point of extreme variance, which can cause the model to devote too much space to
representing it. (2) If explicit space (i.e. its own dimensions) are not allocated for a dimension,
then there are no constraints about where in the embedding space a disconnected component
can lie. This can cause incorrect generalizations for linear classifiers, as the decision boundary
will be set primarily by the largest component.

We have showed in our recent work [71] that it is possible to align embeddings into a unified
coordinate system. We propose developing graph factorization methods which intelligently
align disconnected components in a similar way to allow sensible statistical learning in the
presence of disconnected components.

• Bi-partite Graphs - In many networks the nodes can be divided into disjoint sets, such that
all edges connect between the sets (and not inside of them). This effect is actually quite
common, and occurs in product recommendation graphs, such as the prolific user-movie
bipartite graph. Such networks can present challenges for random walk based methods, as
paths which start in a node of a particular category may not end up in nodes of the same
category (which can bias the underlying representations).

In the literature it has been proposed to use a diffusion process which has a number of steps
equal to the number of disjoint sets [49] (so random walks with even length for a bipartite
graph). We propose investigating the effect of such disjoint sets on representation quality

In addition to investigating these new categories of graphs, it would be very desirable to quan-
tify the conditions under which these representation modeling techniques work. We propose
developing scalable graph quality statistics which allow for the predetermination of DEEPWALK

hyper-parameters.

7.1.2 Speed Enhancements

DEEPWALK’s performance on classification tasks comes at a cost - the simulation of random walks
is an expensive procedure (in both time and space). Our next category of proposed enhancements
relates to increasing the speed at which social representations can be induced.
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• Efficient Gradient Updates - As originally presented, DEEPWALK uses a learning rate that
linearly decays over the course of the algorithm. While performant, this approach assumes
that we must go over the entire corpus before any single representation is learned. However, it
is likely that much of these computations are unnecessary - the representations of high-degree
nodes are learned much more quickly than low degree ones.

In the literature, a number of alternative methods for updating the gradient have been proposed.
Among them, AdaGrad [40] stands out as a theoretically sound method of accounting for
frequency differences in gradient updates. Using AdaGrad, the representations for frequent
nodes will coalesce quickly, but infrequent nodes have the flexibility to move. We propose
extending DeepWalk’s gradient updates in a similar fashion, and believe that this has the
potential to greatly lower the amount of simulated random walks required to learn good
representations.

• Improved Graph Sampling - Most real world graphs have degree distributions which follow
a power-law (and are therefore very unbalanced). In a random walk on a connected graph,
the expected number of times that a vertex is visited is directly related to its degree. As
DEEPWALK uses such uniform random walks to sample the graph, it means that a large
amount of the sampling is devoted to remembering information which is actually quite simple
(high degree nodes are near many others). This means that a disproportionate amount of time
and space are wasted on compressing easily compressible things. We propose investigating
alternative sampling procedures, specifically:

1. Self Avoiding Random Walks - A self-avoiding random walk (SARW) [74] is a random
walk which does not visit the same node twice. Using a SARW could allow for a much
smaller training corpus, as repetitive frequent nodes could be avoided.

2. Emphasizing Rare Nodes - Currently, to ensure that DEEPWALK updates the represen-
tations of every node at least k times, we must start k random walk at each node. As
random walks on undirected graphs are reversible (and independent), we can start two
random walks of half the length at a node and join them - placing the node of interest
in the middle. Each walk will now generate at least 2w updates of the starting node’s
representation.
(This may also have implications regarding how quickly the graph can be covered [7].)

These improvements which may allow learning representations with orders of magnitude less
data.

7.1.3 Enhanced Representations

Another avenue for future work is to develop representations which encode more than just the
structural information of a simple graph G. More formally, DEEPWALK currently learns repre-
sentations (Φ) which model the probability that vertex i and j will co-occur in a short random
walk, Pr(vi|Φ(vj)). We propose extending these representations to model additional events, such
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as the relation between attributes of the vertices. These enhanced representations will extend
DEEPWALK-inspired graph factorization to work in a number of new domains.

• Node Attributed Graphs - Currently DEEPWALKś representations contain concise descrip-
tions of structural information, which is useful for prediction tasks when a network exhibits
homophily (i.e. correlations between structure and the attributes).

We hypothesize that DEEPWALK’s classification performance can be vastly improved by
considering correlations in the label space itself. We propose extending DEEPWALK to
account for these correlations, encoding some label information inside of the embeddings
themselves.

• Edge Attributed Graphs - Edge attributed graphs have the capacity to model different types
of relations between nodes. Each edge is a member of a particular type, and can either model
a distinct semantic relations, or the state of the same relation at distant points in time (i.e, a
temporal graph).

We propose extending DEEPWALK to consider multiple edge types. By capturing different
correlation patterns depending on edge type, we will enable better classification performance
in these domains.

• Knowledge Graphs & Heterogeneous Networks - There has been a recent surge in interest
in semantic graphs such as Knowledge Graphs and Heterogeneous Information Networks
(HIN). These graphs are typically used to store relational information at large Internet
companies (e.g. Google).

Knowledge graphs (and HIN) can be modeled as node attributed graphs, edge attributed
graphs, or a combination of the two. Extending DEEPWALK to embed such knowledge graphs
will open a host of additional real world applications.
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